Is this Simple Harmonic Motion?

AI Thread Summary
The discussion clarifies that the theme park ride does not exhibit Simple Harmonic Motion (SHM) due to increasing amplitude and the influence of rotation. A pendulum only approximates SHM under small amplitude conditions, which is not applicable here. While the ride's motion is periodic, it lacks the characteristics of SHM, such as a linear relationship between force and displacement. Calculations related to SHM concepts like amplitude and frequency can still be applied as approximations in real-world scenarios, despite the absence of true SHM. Overall, the conversation emphasizes the distinction between SHM and other forms of oscillatory motion.
solarmidnightrose
Messages
28
Reaction score
10
I've been going to the theme park almost every year-and this year in my Physics class we are learning mechanics, more specifically Simple Harmonic Motion.
My teacher told us that for an object to have 'Simple Harmonic Motion' it must have oscillatory motion (like a pendulum going back and forth).

Here is the link to a short video of the ride at the theme park I go to: (just skip the video to about the 1/2 way mark).

I was wondering if this follows SHM?

I'm a bit confused because the swinging part of the ride gets successively higher as the ride proceeds.

And I'm wondering if the rotating part of the ride affects the SHM? because in a 'normal pendulum demo', the bob doesn't rotate/spin as it oscillates.

Thank you for reading :)
 
Physics news on Phys.org
No, this is not simple harmonic motion and there are many reasons for it.
  1. As you have noticed, energy is clearly being put into the motion as the amplitude increases.
  2. A pendulum is generally not undergoing SHM. If your teacher claims this he is wrong. For SHM it is not sufficient for the motion to be periodic and the motion of a pendulum is only well approximated by SHM if the amplitude is very small. This is clearly not the case here.
  3. Regarding the rotation, it is a bit unclear which part of the ride you are asking about the SHM for. It is clearly not the case that the people on the ride are in SHM.
 
  • Like
Likes solarmidnightrose
solarmidnightrose said:
we are learning mechanics, more specifically Simple Harmonic Motion.
Most examples in real life may be Harmonic Motion - just not Simple.
SHM can be described by a basic sine wave in time. Even the familiar pendulum is not exactly SHM. The nearest we get to mechanical SHM is a mass bouncing on a good, uniform spring. That relies of good old Hooke's Law which tells us that a spring follows a linear relationship between force and extension.
 
Orodruin said:
No, this is not simple harmonic motion and there are many reasons for it.
  1. As you have noticed, energy is clearly being put into the motion as the amplitude increases.
  2. A pendulum is generally not undergoing SHM. If your teacher claims this he is wrong. For SHM it is not sufficient for the motion to be periodic and the motion of a pendulum is only well approximated by SHM if the amplitude is very small. This is clearly not the case here.
  3. Regarding the rotation, it is a bit unclear which part of the ride you are asking about the SHM for. It is clearly not the case that the people on the ride are in SHM.
Thank you for replying!
So, as this is not SHM, is it still possible to do calculations related to SHM?

things such as:
  • amplitude
  • frequency
  • period
  • angular velocity/acceleration
 
sophiecentaur said:
Most examples in real life may be Harmonic Motion - just not Simple.
SHM can be described by a basic sine wave in time. Even the familiar pendulum is not exactly SHM. The nearest we get to mechanical SHM is a mass bouncing on a good, uniform spring. That relies of good old Hooke's Law which tells us that a spring follows a linear relationship between force and extension.
Thank you for making this clear :)
 
solarmidnightrose said:
So, as this is not SHM, is it still possible to do calculations related to SHM?
I think this is a matter of degree. We describe a Radio Signal in terms of its centre / main frequency which is treating it as a sinusoidal variation of volts. But then we acknowledge that it carries information which implies that it takes up a significant bandwidth. It is not a sine wave BUT that approximation works fine for antenna and amplifier design.
Basically we are in the real world and SHM is a working approximation in many cases. But there is always a caveat.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top