Is this the correct method for finding a coordinate vector?

  • Thread starter Thread starter Ted123
  • Start date Start date
  • Tags Tags
    Coordinate Vector
Ted123
Messages
428
Reaction score
0

Homework Statement



[PLAIN]http://img25.imageshack.us/img25/3409/linearf.jpg

Homework Equations



The Attempt at a Solution



Is this the right method to do this type of question (as I haven't seen an example of finding a coordinate vector before)?

Do I solve the following system of equations?

\displaystyle \frac{1}{2} = x + \frac{1}{2}y + \frac{1}{3}z

\displaystyle \frac{1}{3} = -x + \frac{1}{2}y

\displaystyle -\frac{9}{2} = x+z

If so by Guassian Elimination I get

x=1,\,y=\frac{8}{3},\,z=-\frac{11}{2}

So is \begin{bmatrix} 1 \\ 8/3 \\ -11/2 \\ \end{bmatrix} the coordinate vector?
 
Last edited by a moderator:
Physics news on Phys.org
Hi Ted123! :wink:

Yes, that's fine! :biggrin:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top