Is this the correct way to solve this QM integral problem?

  • Thread starter Thread starter Azruine
  • Start date Start date
  • Tags Tags
    Integral Qm
Azruine
Messages
3
Reaction score
0
< Mentor Note -- thread moved to HH from the technical physics forums, so no HH Template is shown >[/color]

Problem is:

If the behavior of ψ( r,t ) as r->inf is dominated by r-n, what values can n assume if the integral
A(ψ*∇ψ-ψ∇ψ*)⋅nda
taken over the surface at infinity is to vanish.

I considered ψ as ar-n calculate like below
ψ*∇ψ≈ar-n⋅a*(-nr-n-1)=-naa*r-2n-1
ψ∇ψ*≈a*r-n⋅a(-nr-n-1)=-naa*r-2n-1
So... ψ*∇ψ-ψ∇ψ*=0 at anywhere. Thus, n does not affect to integration.

Well, this result is so ridiculous :/
 
Physics news on Phys.org
Welcome to PF!

Suppose ##\psi(x) = \Large{\frac{e^{ikr}}{r^n}}##. Would this be considered a function that is dominated by r-n? (I think so, but I don't know the precise definition of "dominated by".)
 
  • Like
Likes BvU
TSny said:
Welcome to PF!

Suppose ##\psi(x) = \Large{\frac{e^{ikr}}{r^n}}##. Would this be considered a function that is dominated by r-n? (I think so, but I don't know the precise definition of "dominated by".)
Thanks for reply!
I just tried and got the following result
##\psi^{*}\nabla\psi - \psi\nabla\psi^{*} = \Large{\frac{2ki}{r^{2n}}}##
So, now ##n## must be larger than 0. Quite acceptable result :)
 
Are there any factors of r in the area element da?
 
TSny said:
Are there any factors of r in the area element da?
Oh. r^2 dependency... So n>1

OMG I've submitted my homework lol
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top