- 3,372
- 465
I'm having problem in deriving 23.6.11 from Weinberg's-Quantum Theory of fields...
We have: \psi_f \rightarrow \exp (i a_f \gamma_5) \psi_f, f denoting the flavor.
Then for the mass term lagrangian he writes:
L_m = - \frac{1}{2} \sum_f M_f \bar{\psi}_f (1+ \gamma_5) \psi_f - \frac{1}{2} \sum_f M^*_f \bar{\psi}_f (1- \gamma_5) \psi_f
With M_f the mass parameters. He says that by making a transformation of the fields as above, the mass parameter will be redefined:
M_f \rightarrow M_f \exp (2i a_f)
However I think he is missing a \gamma_5?
Because the first for example term:
\begin{multline}
\\
-\frac{1}{2} \sum_f M_f\psi^\dagger_f e^{-i \gamma_5 a_f}\gamma_0 (1+ \gamma_5) e^{i \gamma_5 a_f} \psi_f=\\
\approx -\frac{1}{2} \sum_f M_f\psi^\dagger_f (1-i \gamma_5 a_f)\gamma_0 (1+ \gamma_5) (1+i \gamma_5 a_f) \psi_f=\\
=-\frac{1}{2} \sum_f \psi^\dagger_f \gamma_0 M_f (1+i \gamma_5 a_f) (1+i \gamma_5 a_f) (1+ \gamma_5)\psi_f=\\
=-\frac{1}{2} \sum_f \bar{\psi}_f M_f (1+i 2 \gamma_5 a_f) (1+ \gamma_5)\psi_f
\end{multline}which leads in the redifinition of M:
M_f \rightarrow M_f \exp (2i a_f \gamma_5)
Any help?
We have: \psi_f \rightarrow \exp (i a_f \gamma_5) \psi_f, f denoting the flavor.
Then for the mass term lagrangian he writes:
L_m = - \frac{1}{2} \sum_f M_f \bar{\psi}_f (1+ \gamma_5) \psi_f - \frac{1}{2} \sum_f M^*_f \bar{\psi}_f (1- \gamma_5) \psi_f
With M_f the mass parameters. He says that by making a transformation of the fields as above, the mass parameter will be redefined:
M_f \rightarrow M_f \exp (2i a_f)
However I think he is missing a \gamma_5?
Because the first for example term:
\begin{multline}
\\
-\frac{1}{2} \sum_f M_f\psi^\dagger_f e^{-i \gamma_5 a_f}\gamma_0 (1+ \gamma_5) e^{i \gamma_5 a_f} \psi_f=\\
\approx -\frac{1}{2} \sum_f M_f\psi^\dagger_f (1-i \gamma_5 a_f)\gamma_0 (1+ \gamma_5) (1+i \gamma_5 a_f) \psi_f=\\
=-\frac{1}{2} \sum_f \psi^\dagger_f \gamma_0 M_f (1+i \gamma_5 a_f) (1+i \gamma_5 a_f) (1+ \gamma_5)\psi_f=\\
=-\frac{1}{2} \sum_f \bar{\psi}_f M_f (1+i 2 \gamma_5 a_f) (1+ \gamma_5)\psi_f
\end{multline}which leads in the redifinition of M:
M_f \rightarrow M_f \exp (2i a_f \gamma_5)
Any help?