Is Weinberg missing a \gamma_5 in his mass parameter redefinition?

  • Thread starter Thread starter ChrisVer
  • Start date Start date
  • Tags Tags
    Qft Weinberg
ChrisVer
Science Advisor
Messages
3,372
Reaction score
465
I'm having problem in deriving 23.6.11 from Weinberg's-Quantum Theory of fields...

We have: \psi_f \rightarrow \exp (i a_f \gamma_5) \psi_f, f denoting the flavor.

Then for the mass term lagrangian he writes:

L_m = - \frac{1}{2} \sum_f M_f \bar{\psi}_f (1+ \gamma_5) \psi_f - \frac{1}{2} \sum_f M^*_f \bar{\psi}_f (1- \gamma_5) \psi_f

With M_f the mass parameters. He says that by making a transformation of the fields as above, the mass parameter will be redefined:

M_f \rightarrow M_f \exp (2i a_f)
However I think he is missing a \gamma_5?

Because the first for example term:

\begin{multline}

\\

-\frac{1}{2} \sum_f M_f\psi^\dagger_f e^{-i \gamma_5 a_f}\gamma_0 (1+ \gamma_5) e^{i \gamma_5 a_f} \psi_f=\\

\approx -\frac{1}{2} \sum_f M_f\psi^\dagger_f (1-i \gamma_5 a_f)\gamma_0 (1+ \gamma_5) (1+i \gamma_5 a_f) \psi_f=\\

=-\frac{1}{2} \sum_f \psi^\dagger_f \gamma_0 M_f (1+i \gamma_5 a_f) (1+i \gamma_5 a_f) (1+ \gamma_5)\psi_f=\\

=-\frac{1}{2} \sum_f \bar{\psi}_f M_f (1+i 2 \gamma_5 a_f) (1+ \gamma_5)\psi_f

\end{multline}which leads in the redifinition of M:

M_f \rightarrow M_f \exp (2i a_f \gamma_5)

Any help?
 
Physics news on Phys.org
Expand ## e^{ i \alpha_f \gamma_5} = 1 + i \alpha_f \gamma_5 - \frac{\alpha_f^2}{2!} \gamma_5 \ldots = \cos{\alpha_f} 1 + i \sin{\alpha_f} \gamma_5 ,## since ## \gamma_5^2 = 1##.

The first term in the lagrangian goes to ##\rightarrow \bar{\psi} e^{i \alpha_f \gamma_5} ( 1 + \gamma_5 ) e^{i \alpha_f \gamma_5} \psi ##

Using the expansion above, we find that
e^{2 i \alpha_f \gamma_5} = \cos{2 \alpha_f} 1 + i \sin{2 \alpha_f} \gamma_5
and
e^{i \alpha_f \gamma_5} \gamma_5 e^{i \alpha_f \gamma_5} = \cos{2\alpha_f} \gamma_5 + i \sin{2\alpha_f} 1
so
e^{i \alpha_f \gamma_5} ( 1 + \gamma_5 ) e^{i \alpha_f \gamma_5} = e^{2 i \alpha_f} (1 + \gamma_5)
 
  • Like
Likes ChrisVer
Hi, thanks for clarifying... so I have to expland the whole exponential... [that is somewhat confusing, other times people expland it up to 1st order, other times they write the whole expansion].
 
Could someone help me with the metric he obtains at 23.4.10?
I have tried all possible ways but I haven't been able to reproduce his result... Here is my last try for solution...Obviously my results are not the same even for the easies ase of (44) component..

Used:

Tr[\tau_a \tau_b]= \frac{1}{2} \delta_{ab}
Tr[\tau_a \tau_b \tau_c]= \frac{i}{8} \epsilon_{bca}
Tr[\tau_a \tau_b \tau_c \tau_d]= \frac{1}{8} \delta_{ab} \delta_{cd} + \frac{1}{32} ( \delta_{cb} \delta_{ad} - \delta_{ca} \delta_{bd})

\begin{multline}

\\

g=\theta_4 1 +2 i \theta_i \tau_i \\

g^{-1}= \theta_4 1 -2 i \theta_i \tau_i \\

A_{ij}=g^{-1} (\partial_i g) g^{-1} (\partial_j g)\\

\end{multline}
\begin{equation}

\gamma_{ij}(\theta) = -\frac{1}{2} Tr A_{ij}

\end{equation}
So:
\begin{multline}

A_{44}=g^{-1} (\partial_4 g) g^{-1} (\partial_4 g)=g^{-1} g^{-1} 1= \theta_4^2 1- 4 \theta_a \theta_b \tau_a \tau_b-4i \theta_4 \theta_a \tau_a \\

\gamma_{44}= - \theta_4^2 + \theta^2 = 2 \theta^2 -1 \\

A_{4i}= g^{-1} (\partial_4 g) g^{-1} (\partial_i g)= g^{-1} g^{-1} 2i \tau_i=2i \theta_4^2 \tau_i - 8i \theta_a \theta_b \tau_a \tau_b \tau_i +8 \theta_4 \theta_a \tau_a \tau_i\\

\gamma_{4i}=-\frac{1}{2} \theta_a \theta_b \epsilon_{bia}-2 \theta_4 \theta_i = - 2 \theta_4 \theta_i = \gamma_{i4} \Big|_{checked}\\

A_{ij}=-4g^{-1} \tau_i g^{-1} \tau_j= -4 (\theta_4 1 -2 i \theta_a \tau_a)\tau_i (\theta_4 1 -2 i \theta_b \tau_b)\tau_j\\

\gamma_{ij}=-\frac{1}{4} (3 \theta^2 \delta_{ij}- 4\delta_{ij}+ 5 \theta_{i} \theta_{j})\\

\end{multline}
 
Last edited:
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Replies
14
Views
3K
Replies
3
Views
2K
Replies
5
Views
2K
Replies
5
Views
2K
4
Replies
175
Views
25K
Replies
766
Views
737K
Replies
39
Views
27K
Back
Top