Isomorphism between Order Ideals and Distributive Lattices

  • Thread starter Thread starter I<3Gauss
  • Start date Start date
  • Tags Tags
    Isomorphism
I<3Gauss
Messages
14
Reaction score
0
The poset on the set of order ideals of a poset p, denoted L(p), is a distributive lattice, and it is pretty clear why this is since the supremum of two order ideals and the infimum of 2 order ideals are just union and intersection respectively, and we know that union and intersection are distributive operations. However, Richard Stanley, in his book Enumerative Combinatorics, states that for any distributive lattice L, there exists a poset P such that L(P) is isomorphic to L. I was wondering what the proof is for this particular statement is since I have been trying to prove this to no avail. I appreciate the responses.
 
Physics news on Phys.org
At first glance, it seems like it should be isomorphic to its own set of order ideals. I feel like that's too easy of an answer though, and I'm making an assumption that's not true
 
That's an interesting idea but however, i also do not have the guts yet or the know how to make such an assumption.
 
Think about the map

x\mapsto I_x where I_x is the order ideal of x.
 
thanks for the tip, i think i kind of see why this is now. I guess if a poset P was the join irreducible set of some Lattice L, and this particular poset P is isomorphic to the join-irreducibles of L(P), which is the set of all Ix, then L would be isomorphic to L(P)?

The tip that you gave would easily prove that a poset P would be isomorphic to the join-irreducibles of J(P), but I guess what I still don't understand is the following:

How does proving P is the subposet of join-irreducibles of L is isomorphic to the join-irreducibles of L(P) help us in proving that L is indeed isomorphic to L(P)?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top