Issue converting dV to dx dy dz

  • Thread starter Thread starter Addez123
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The discussion focuses on the challenge of integrating the divergence of a vector field over a cut-off sphere, specifically addressing the integration of the terms 2x + z + 8z^3. The user attempts to use small discs for integration but realizes that this method does not account for the variation of the vector field within each disc. It is suggested to exploit symmetry by shifting the variable and using spherical coordinates for the integration. The conversation highlights the importance of correctly defining the volume element and considering the dependencies of the integrand. The integration process requires careful consideration of the vector field's characteristics to achieve accurate results.
Addez123
Messages
199
Reaction score
21
Homework Statement
Integrate the vector field
$$A = (2xy + x^2, 2 +yz, 2z^4)$$
over the sphere surface:
$$x^2+(y-1)^2+z^2 = 4$$
where y >= 0
Relevant Equations
Divergence theorem
I can calculate the divergence
$$div A = 2y + 2x + z + 8z^3$$
Now I have to integrate over this cut-off sphere.

So I decide I'll cut it up into small discs with height dy and integrate over that
$$dV = \pi(4 - (y-1)^2)^2 * dy$$

My issue here is I don't know how to integrate 2x + z + 8z^3.
Not only that but it's suppose to be a triple integral and all I get is dy..

I must have missed a step but idk which :/
 
Physics news on Phys.org
There's not sufficient symmetry to use discs as volume elements, because the vector field ##\mathbf{A}## varies within each disc. Exploit the symmetry. Shift ##y' \equiv y-1## and write the resulting integral in terms of spherical coordinates (with ##dV = r^2 \sin{\theta} dr d\theta d\phi##).
 
Addez123 said:
Homework Statement:: Integrate the vector field
$$A = (2xy + x^2, 2 +yz, 2z^4)$$
over the sphere surface:
$$x^2+(y-1)^2+z^2 = 4$$
where y >= 0
Relevant Equations:: Divergence theorem

So I decide I'll cut it up into small discs with height dy and integrate over that
dV=π(4−(y−1)2)2∗dy
This is not dV. It is dV integrated over the x and z coordinates assuming that the integrand does not depend on them. (Assuming you get rid of that additional square you inserted.)

However, there may be a way to get rid of that pesky x and z dependence if you think a few extra times before writing down the integral.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...