Ivyrianne's question at Yahoo Answers regarding finding the height of a tree

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Height Tree
Click For Summary
SUMMARY

The discussion focuses on calculating the height of a tree located on a hillside using trigonometric principles. A 40m tower stands vertically on a slope with an 18-degree angle, while the angles of depression from the tower to the top and bottom of the tree are 26 degrees and 38 degrees, respectively. The derived formula for the height of the tree, denoted as \( h \), is \( h = \frac{(40 \text{ m})\left(\tan(38^{\circ}) - \tan(26^{\circ})\right)}{\tan(38^{\circ}) + \tan(18^{\circ})} \), resulting in an approximate height of 10.61 meters.

PREREQUISITES
  • Understanding of trigonometric functions, specifically tangent.
  • Familiarity with angles of depression and elevation.
  • Ability to solve equations involving trigonometric identities.
  • Basic knowledge of geometry related to right triangles.
NEXT STEPS
  • Study the properties of tangent functions in trigonometry.
  • Learn how to apply the Law of Sines and Cosines in real-world problems.
  • Explore advanced applications of trigonometry in surveying and navigation.
  • Investigate methods for solving problems involving angles of elevation and depression.
USEFUL FOR

Students in mathematics, engineers, architects, and anyone involved in fields requiring the application of trigonometry for real-world measurements and calculations.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A 40m high tower stands vertically on a hill side (sloping ground) which makes an angle of 18 degrees with the?

con't; horizontal. A tree also stands vertically up the hill from the tower. An observer on top of the tower finds the angle of depression from the top of the tree to be 26deg & the bottom of the tree to be 38deg. Find the height of the tree.

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello ivyrianne,

I would begin by drawing a diagram:

View attachment 999

$T$ is the height of the tower.

$x$ is the horizontal distance between the tower and the tree.

$a$ is the vertical distance between the bottom of the tower and the bottom of the tree.

$b$ is the vertical distance between the top of the tower and the top of the tree.

$h$ is the height of the tree.

$\theta$ is the angle of inclination of the hill.

$\alpha$ is the angle of depression from the top of the tower to the top of the tree.

$\beta$ is the angle of depression from the top of the tower to the bottom of the tree.

Now, from the diagram, we observe the following relationships:

(1) $$a+h+b=T$$

(2) $$\tan(\theta)=\frac{a}{x}$$

(3) $$\tan(\alpha)=\frac{b}{x}$$

(4) $$\tan(\beta)=\frac{h+b}{x}$$

Solving (1) and (4) for $h+b$ and equating, we find:

$$T-a=x\tan(\beta)$$

Solving (2) for $a$, and substituting into the above, we may write:

$$T-x\tan(\theta)=x\tan(\beta)$$

Solving this for $x$, there results:

(5) $$x=\frac{T}{\tan(\beta)+\tan(\theta)}$$

Now, solving (4) for $h$, we get:

$$h=x\tan(\beta)-b$$

Solving (3) for $b$ and substituting into the above, we get:

$$h=x\tan(\beta)-x\tan(\alpha)$$

$$h=x\left(\tan(\beta)-\tan(\alpha) \right)$$

Substituting for $x$ from (5), we find:

$$h=\left(\frac{T}{\tan(\beta)+\tan(\theta)} \right)\left(\tan(\beta)-\tan(\alpha) \right)$$

$$h=\frac{T\left(\tan(\beta)-\tan(\alpha) \right)}{\tan(\beta)+\tan(\theta)}$$

Plugging in the given data:

$$\theta=18^{\circ},\,\alpha=26^{\circ},\,\beta=38^{\circ},\,T=40\text{ m}$$

we have:

$$h=\frac{(40\text{ m})\left(\tan\left(38^{\circ} \right)-\tan\left(26^{\circ} \right) \right)}{\tan\left(38^{\circ} \right)+\tan\left(18^{\circ} \right)}\approx10.6147758253\text{ m}$$
 

Attachments

  • ivyrianne.jpg
    ivyrianne.jpg
    7.2 KB · Views: 331

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K