MHB Ivyrianne's question at Yahoo Answers regarding finding the height of a tree

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Height Tree
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A 40m high tower stands vertically on a hill side (sloping ground) which makes an angle of 18 degrees with the?

con't; horizontal. A tree also stands vertically up the hill from the tower. An observer on top of the tower finds the angle of depression from the top of the tree to be 26deg & the bottom of the tree to be 38deg. Find the height of the tree.

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello ivyrianne,

I would begin by drawing a diagram:

View attachment 999

$T$ is the height of the tower.

$x$ is the horizontal distance between the tower and the tree.

$a$ is the vertical distance between the bottom of the tower and the bottom of the tree.

$b$ is the vertical distance between the top of the tower and the top of the tree.

$h$ is the height of the tree.

$\theta$ is the angle of inclination of the hill.

$\alpha$ is the angle of depression from the top of the tower to the top of the tree.

$\beta$ is the angle of depression from the top of the tower to the bottom of the tree.

Now, from the diagram, we observe the following relationships:

(1) $$a+h+b=T$$

(2) $$\tan(\theta)=\frac{a}{x}$$

(3) $$\tan(\alpha)=\frac{b}{x}$$

(4) $$\tan(\beta)=\frac{h+b}{x}$$

Solving (1) and (4) for $h+b$ and equating, we find:

$$T-a=x\tan(\beta)$$

Solving (2) for $a$, and substituting into the above, we may write:

$$T-x\tan(\theta)=x\tan(\beta)$$

Solving this for $x$, there results:

(5) $$x=\frac{T}{\tan(\beta)+\tan(\theta)}$$

Now, solving (4) for $h$, we get:

$$h=x\tan(\beta)-b$$

Solving (3) for $b$ and substituting into the above, we get:

$$h=x\tan(\beta)-x\tan(\alpha)$$

$$h=x\left(\tan(\beta)-\tan(\alpha) \right)$$

Substituting for $x$ from (5), we find:

$$h=\left(\frac{T}{\tan(\beta)+\tan(\theta)} \right)\left(\tan(\beta)-\tan(\alpha) \right)$$

$$h=\frac{T\left(\tan(\beta)-\tan(\alpha) \right)}{\tan(\beta)+\tan(\theta)}$$

Plugging in the given data:

$$\theta=18^{\circ},\,\alpha=26^{\circ},\,\beta=38^{\circ},\,T=40\text{ m}$$

we have:

$$h=\frac{(40\text{ m})\left(\tan\left(38^{\circ} \right)-\tan\left(26^{\circ} \right) \right)}{\tan\left(38^{\circ} \right)+\tan\left(18^{\circ} \right)}\approx10.6147758253\text{ m}$$
 

Attachments

  • ivyrianne.jpg
    ivyrianne.jpg
    7.2 KB · Views: 313
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top