MHB Ivyrianne's question at Yahoo Answers regarding finding the height of a tree

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Height Tree
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A 40m high tower stands vertically on a hill side (sloping ground) which makes an angle of 18 degrees with the?

con't; horizontal. A tree also stands vertically up the hill from the tower. An observer on top of the tower finds the angle of depression from the top of the tree to be 26deg & the bottom of the tree to be 38deg. Find the height of the tree.

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello ivyrianne,

I would begin by drawing a diagram:

View attachment 999

$T$ is the height of the tower.

$x$ is the horizontal distance between the tower and the tree.

$a$ is the vertical distance between the bottom of the tower and the bottom of the tree.

$b$ is the vertical distance between the top of the tower and the top of the tree.

$h$ is the height of the tree.

$\theta$ is the angle of inclination of the hill.

$\alpha$ is the angle of depression from the top of the tower to the top of the tree.

$\beta$ is the angle of depression from the top of the tower to the bottom of the tree.

Now, from the diagram, we observe the following relationships:

(1) $$a+h+b=T$$

(2) $$\tan(\theta)=\frac{a}{x}$$

(3) $$\tan(\alpha)=\frac{b}{x}$$

(4) $$\tan(\beta)=\frac{h+b}{x}$$

Solving (1) and (4) for $h+b$ and equating, we find:

$$T-a=x\tan(\beta)$$

Solving (2) for $a$, and substituting into the above, we may write:

$$T-x\tan(\theta)=x\tan(\beta)$$

Solving this for $x$, there results:

(5) $$x=\frac{T}{\tan(\beta)+\tan(\theta)}$$

Now, solving (4) for $h$, we get:

$$h=x\tan(\beta)-b$$

Solving (3) for $b$ and substituting into the above, we get:

$$h=x\tan(\beta)-x\tan(\alpha)$$

$$h=x\left(\tan(\beta)-\tan(\alpha) \right)$$

Substituting for $x$ from (5), we find:

$$h=\left(\frac{T}{\tan(\beta)+\tan(\theta)} \right)\left(\tan(\beta)-\tan(\alpha) \right)$$

$$h=\frac{T\left(\tan(\beta)-\tan(\alpha) \right)}{\tan(\beta)+\tan(\theta)}$$

Plugging in the given data:

$$\theta=18^{\circ},\,\alpha=26^{\circ},\,\beta=38^{\circ},\,T=40\text{ m}$$

we have:

$$h=\frac{(40\text{ m})\left(\tan\left(38^{\circ} \right)-\tan\left(26^{\circ} \right) \right)}{\tan\left(38^{\circ} \right)+\tan\left(18^{\circ} \right)}\approx10.6147758253\text{ m}$$
 

Attachments

  • ivyrianne.jpg
    ivyrianne.jpg
    7.2 KB · Views: 328

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K