Jacobian Math Homework: Chain Rule and Determinants of Composition

phrygian
Messages
77
Reaction score
0

Homework Statement



Suppose that P, Q, and R are regions in R2, and suppose T1 : P -> Q and T2 : Q -> R are
dierentiable. Use the (multivariable) Chain Rule and det(AB) = det(A)det(B) to show that the Jacobian of the
composition T2 o T1 is the product of the Jacobians of T1 and T2.


Homework Equations





The Attempt at a Solution



So if I say T1 is given by x = g(u,v) and y = h(u,v) and T2 is given by u = i(s,t) and v = j(s,t) , I know how to find the two jacobians T1 and T2 but am confused how do you find the jacobian of the composite transformation T1 o T2?
 
Physics news on Phys.org


Follow their instructions: use the chain rule to compute the derivative of T_2 \circ T_1.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top