Rive
Science Advisor
- 3,312
- 2,880
etudiant said:Well, 100 Bq/cubic meter would only be 80 million Bq for the total 800,000 cubic meter inventory, so there is a considerable misunderstanding.
I'm very skeptical of the 100 Bq/cubic meter number, it may more plausibly be per cubic centimeter or per liter.
I do know parts of the Baltic Sea had cesium levels of well above 1000 Bq/cubic meter in consequence of Chernobyl .
My guess is that we have 3.4 PBq in 800,000 cubic meters of water, so about 4x10**6 Bq/cubic meter in the Fukushima waste cooling water.
According to Wiki the limit for tritium in drinking water is 740Bq/l in USA and above 70kBq/l in Australia.
There is enough water available locally that it could be diluted below any limit.
Given its short half-life I think it is exactly the case when any 'solutions' what would keep it in concentrated form are far more dangerous than to dump it to the ocean.
Last edited: