Joint probability density function

drawar
Messages
130
Reaction score
0
I'm practicing the past year papers to prepare for my coming finals. Please make necessary corrections if you feel something wrong with it, thanks!
Also, I'm supposed to do this in less than half an hour, so any suggestions on how to shorten this answer is really much appreciated!

Homework Statement


The joint density function of X and Y is given by
f(x,y) = \frac{K}{y}{e^{ - \frac{{{y^2}}}{2} - \frac{x}{y}}} for 0 < y < x < \infty
and 0 elsewhere, where K is the normalizing constant.
(i) Determine the value of K.
(ii) Find the marginal probability density function of Y .
(iii) Evaluate E[Y] and Var(Y).
(iv) Find the conditional density function {f_{X|Y}}(x|y) for 0 < y < x, and then evaluate E[X|Y].
(v) Evaluate E[X].
(vi) Evaluate Cov(X; Y ).

Homework Equations


The Attempt at a Solution



(i)
\int\limits_0^\infty {\int\limits_0^x {\frac{K}{y}{e^{ - \frac{{{y^2}}}{2} - \frac{x}{y}}}dydx = } } K\int\limits_0^\infty {\int\limits_y^\infty {\frac{1}{y}{e^{ - \frac{{{y^2}}}{2} - \frac{x}{y}}}dxdy = } } K\int\limits_0^\infty {\frac{1}{y}{e^{ - \frac{{{y^2}}}{2}}}} \int\limits_y^\infty {{e^{ - \frac{x}{y}}}} dxdy = K\int\limits_0^\infty {\frac{1}{y}{e^{ - \frac{{{y^2}}}{2}}}y{e^{ - 1}}} dy = K{e^{ - 1}}\sqrt {2\pi } \frac{1}{{\sqrt {2\pi } }}\int\limits_0^\infty {{e^{ - \frac{{{y^2}}}{2}}}} dy = K{e^{ - 1}}\sqrt {2\pi } \frac{1}{2} because here I think y can be seen to follow a standard normal distribution whose graph is symmetrical about 0, so the area of the right half of the curve, which is equal to \frac{1}{{\sqrt {2\pi } }}\int\limits_0^\infty {{e^{ - \frac{{{y^2}}}{2}}}} dy is 1/2.
The above integral must equal 1, hence we solve K = e\sqrt {\frac{2}{\pi }}

(ii) It follows directly from (i) that {f_Y}(y) = K\int\limits_y^\infty {\frac{1}{y}{e^{ - \frac{{{y^2}}}{2} - \frac{x}{y}}}dx = K} {e^{ - \frac{{{y^2}}}{2}}}{e^{ - 1}} = {e^{ - \frac{{{y^2}}}{2}}}\sqrt {\frac{2}{\pi }}

(iii)E[Y] = \int\limits_0^\infty y {e^{ - \frac{{{y^2}}}{2}}}\sqrt {\frac{2}{\pi }} dy = \sqrt {\frac{2}{\pi }}

Let Z ~ N(0,1) => E[Z^2]=Var(Z)=1. Thus E[{Z^2}] = \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^\infty {{z^2}{e^{ - \frac{{{z^2}}}{2}}}dz = 1} \Rightarrow \frac{1}{{\sqrt {2\pi } }}\int\limits_0^\infty {{z^2}{e^{ - \frac{{{z^2}}}{2}}}dz = \frac{1}{2}}, and then

E[{Y^2}] = \sqrt {\frac{2}{\pi }} \int\limits_0^\infty {{y^2}} {e^{ - \frac{{{y^2}}}{2}}}dy = \sqrt {\frac{2}{\pi }} \int\limits_0^\infty {{z^2}{e^{ - \frac{{{z^2}}}{2}}}dz = } \sqrt {\frac{2}{\pi }} \times \frac{1}{2} \times \sqrt {2\pi } = 1

Var(Y) = E[{Y^2}] - E{[Y]^2} = 1 - \frac{2}{\pi } = \frac{{\pi - 2}}{\pi }

(iv)
{f_{X|Y}}(x|y) = \frac{{f(x,y)}}{{{f_Y}(y)}} = \frac{1}{y}{e^{1 - \frac{x}{y}}}

E[X|Y = y] = \frac{e}{y}\int\limits_0^\infty {x{e^{ - \frac{x}{y}}}} dx = \frac{e}{y}\left( {\frac{{{y^2} + y}}{e}} \right) = y + 1

(v)
E[X] = E[E[X|Y]] = E[Y + 1] = 1 + E[Y] = 1 + \sqrt {\frac{2}{\pi }}

(vi)
E[XY] = E[E[XY|Y]] = E[YE[X|Y]] = E[Y(Y + 1)] = E[{Y^2}] + E[Y] = 1 + \sqrt {\frac{2}{\pi }}

Cov(X,Y) = E[XY] - E[X]E[Y] = 1 + \sqrt {\frac{2}{\pi }} - \left( {1 + \sqrt {\frac{2}{\pi }} } \right)\sqrt {\frac{2}{\pi }} = 1 - \frac{2}{\pi }
 
Physics news on Phys.org
drawar said:
(iv)
\frac{e}{y}\int\limits_0^\infty {x{e^{ - \frac{x}{y}}}} dx = \frac{e}{y}\left( {\frac{{{y^2} + y}}{e}} \right)
I get something a bit different for that last step (and yes, I realize the range is actually from y, not from 0). Everything up to there looks right.
 
haruspex said:
I get something a bit different for that last step (and yes, I realize the range is actually from y, not from 0). Everything up to there looks right.

Oh, my bad, shouldn't be that careless. Thanks for pointing that out!

\begin{array}{l}<br /> {\rm E}[X|Y = y] = \frac{e}{y}\int\limits_y^\infty {x{e^{ - \frac{x}{y}}}} dx = \frac{e}{y}\left( {\frac{{2{y^2}}}{e}} \right) = 2y \\ <br /> {\rm E}[X] = {\rm E}[{\rm E}[X|Y]] = {\rm E}[2Y] = 2{\rm E}[Y] = 2\sqrt {\frac{2}{\pi }} \\ <br /> {\rm E}[XY] = {\rm E}[{\rm E}[XY|Y]] = {\rm E}[Y{\rm E}[X|Y]] = {\rm E}[2{Y^2}] = 2{\rm E}[{Y^2}] = 2 \\ <br /> Cov(X,Y) = {\rm E}[XY] - {\rm E}[X]{\rm E}[Y] = 2 - \left( {2\sqrt {\frac{2}{\pi }} } \right)\sqrt {\frac{2}{\pi }} = 2 - \frac{4}{\pi } \\ <br /> \end{array}

I hope it's fine now.
 
Last edited:
Yes, that all looks good.
 
haruspex said:
Yes, that all looks good.

Thank you so much! :)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top