Joint probability distribution

Gauss M.D.
Messages
151
Reaction score
1

Homework Statement



f(x,y) = x2 + xy3 for 0 < x < 1, 0 < y < 2
and 0 otherwise.

Calculate P(X+Y < 1)

Homework Equations





The Attempt at a Solution



P(X+Y < 1) = P(X < 1-Y) which means y is now bounded by 0:1 instead of 0:2 and x is bounded by 0:y.

So we get ∫[0-1][0-y] x2 + xy3 dx dy

Integrating twice I get the answer P(X < 1-Y) = 1/8, which is incorrect.

What am I doing wrong?
 
Physics news on Phys.org
Oops.
 
I.e. nevermind.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top