Kinetic and Potential Gravitational Energy Problem

AI Thread Summary
A watermelon with a mass of 2.0 kg falls from a height of 5.4 m, resulting in a speed of 10.29 m/s just before impact, calculated using energy conservation principles. For a cantaloupe weighing 0.45 kg that hits a branch at 6.3 m/s, the height of the branch is determined to be 3.38 m from the ground, despite initial confusion over the mass's relevance. The mass cancels out in energy equations, confirming that height can be calculated without it. The discussion also touches on energy conversions during tobogganing, highlighting that gravitational potential energy converts to kinetic energy, thermal energy due to friction, and sound energy. Overall, the calculations and concepts demonstrate the principles of kinetic and potential energy in real-world scenarios.
Seinfeld4
Messages
21
Reaction score
0

Homework Statement



a) A watermelon with a mass of 2.0kg falls out of a tree house that is 5.4m above the ground. What is the speed of the watermelon just before it hits the ground?

First I found Eg to be 105.9 J based on the formula Eg = mg (h2 - h1).
Since the watermelon hits the ground, Eg = Ek. Then I found the velocity to be 10.29m/s from the formula v = sq.rt (2 Ek / m).

I (hopefully) did this part properly.

b) A cantaloupe with a mass of 0.45kg falls out of the other side of the tree house. It hits a tree branch at a speed of 6.3 m/s. How high is the tree branch from the ground?

This is the part I'm having a bit of trouble with.

The only thing I can think of using is the formula for height.

h = ((v1)^2 - (vf)^2) / 2g
h = (0 - (6.3m/s)^2) / (2 * 9.81m/s^2)
h = -2.02m

Then 5.4m - 2.02m = 3.38m from the ground to the branch.

When I do it this way, I'm not using the information given in the question, which was the mass, 0.45kg. So, I think I'm doing it incorrectly. Can anybody help me out? Thanks!
 
Physics news on Phys.org
When you equate the kinetic and potential energies, the mass gets cancelled.

mgh=\frac{1}{2} m v^{2}

Also the equation you used reads as:

v_{f}^{2}-v_{i}^{2}=2gh

You switched the position of the final and initial velocities, giving a negative height; how can a height be negative? If you switch those two, you get 2.02 m covered out of 5.4 m. So the distance of the branch from the ground is 5.4-2.02 = 3.38 m.
 
Thanks for the response!

Hmmm...my book says h = ((v1)^2 - (vf)^2) / 2g. I just triple checked.

Oh well, I just assumed that the negative height meant that it was being measured from the top down instead of the bottom up.

But is 3.38m the correct answer then? I would have thought it would have something to do with the cantaloupe being 0.45kg, otherwise why would they give you that information? Unless they're trying to trick me and doing a good job of it haha
 
v1 should be the final velocity in that case (6.3 m/s) and vf should be the initial velocity (0 m/s). To see why the mass does not affect the result, you can use energy conservation:

Suppose the branch is h meters above the ground. So the height covered by the cantaloupe is (5.4-h) meters. Hence the amount of potential energy converted to kinetic is mg(5.4-h). Using energy conservation,

\frac{1}{2} m v^{2} = mg(5.4-h)

So the m will cancel. Solving through for h will give the same answer you got from kinematics.
 
Ok, thanks a lot, much appreciated!

Just one more quick question if you don't mind.

What are the basic energy conversions that take place when someone at the top of a snowy hill toboggans down?

Is it just gravitational potential energy - kinetic energy

Or, is it gravitational potential energy - kinetic AND thermal energy (due to friction on the way down)?
 
In real life, the potential energy at the top would be converted into kinetic energy & thermal energy as you mentioned, but also into sound. This means you can't simply equate kinetic and potential energies to find velocity at the bottom of the hill!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top