Kinetic Energy in terms of Conjugate Momenta

MisterX
Messages
758
Reaction score
71
Thanks if you take the time to read this.

Homework Statement


a9UJ4sK.png

Homework Equations


The Attempt at a Solution


The problem I'm getting is that I'm not getting the kinetic energy diagonal when I convert to the coordinates that diagonalize the potential energy. If you scroll all the way down you should see there's a cross derivative term involving the partial derivatives w.r.t.q_1and q_1. I'm not able to spot any significant mistakes. So is there some other way to diagonalize both the potential and the conjugate momenta in the new coordinates? Is there something I'm missing? How does the \frac{1}{2(2M + m_2)} factor come into play?

First we make a transformation in the x coordinates so that the a's go away. Namely
\begin{bmatrix} x_1^\prime \\x_2^\prime \\ x_3^\prime\end{bmatrix} = \begin{bmatrix} x_1 \\x_2 \\ x_3 \end{bmatrix} - \begin{bmatrix} a/2 \\-a/2 \\ -3a/2\end{bmatrix}
And I will refer to the x_i^\prime coordinates without the prime hereafter.
(x_2 - x_1)^2 + (x_3 - x_2)^2 = x_1^2 +x_2^2 - 2x_1x_2 + x_2^2+ x_3^2 - 2x_2x_3
There are multiple choices for the matrix which below which would produce the above algebraic expression. We want to choose the one which Hermitian, so that the corresponding transformation is unitary.
= \begin{bmatrix} x_1 &x_2 & x_3\end{bmatrix}\begin{bmatrix} 1 &-1 &0 \\ -1 &2 &-1 \\ 0 & -1 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\x_2 \\ x_3\end{bmatrix}
det\begin{bmatrix} 1 - \lambda &-1 &0 \\ -1 &2- \lambda &-1 \\ 0 & -1 & 1- \lambda \end{bmatrix} = \left(1 - \lambda \right)^2\left(2 - \lambda \right) - \left(1 - \lambda \right) - \left(1 - \lambda \right)
\begin{align*} = \left(1 - \lambda \right)\left[\left(1 - \lambda \right)\left(2 - \lambda \right) -2 \right] &= \left(1 - \lambda \right)\left[2 - 3\lambda + \lambda^2 -2 \right] \\
& =\lambda\left(1 - \lambda \right)\left(\lambda - 3 \right) \end{align*}
So the set of eigenvalues is \left\{0, 1, 3 \right\}.
U = \begin{bmatrix} 1/\sqrt{3} &1/\sqrt{3} &1/\sqrt{3} \\ 1/\sqrt{2} &0 &-1/\sqrt{2} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{bmatrix}
U^{T}\begin{bmatrix} 0 &0 &0 \\ 0 &1 &0 \\ 0 & 0 & 3 \end{bmatrix}U = \begin{bmatrix} 1 &-1 &0 \\ -1 &2 &-1 \\ 0 & -1 & 1 \end{bmatrix}
\begin{bmatrix} q_1 \\q_2 \\ q_3\end{bmatrix} = U \begin{bmatrix} x_1 \\x_2 \\ x_3\end{bmatrix}
Next begins the calculation of the partial derivatives of x_i in the new coordinate frame, as the first step to finding the kinetic energy in terms of conjugate momenta.
\begin{bmatrix}\frac{\partial }{\partial x_1} & \frac{\partial }{\partial x_2} & \frac{\partial }{\partial x_3}\end{bmatrix} = \begin{bmatrix}\frac{\partial }{\partial q_1} & \frac{\partial }{\partial q_2} & \frac{\partial }{\partial q_3}\end{bmatrix}UKE = -\hbar^2\begin{bmatrix}\frac{\partial }{\partial x_1} & \frac{\partial }{\partial x_2} & \frac{\partial }{\partial x_3}\end{bmatrix} \begin{bmatrix} \frac{1}{2M} &0 &0 \\ 0 &\frac{1}{2m_2} &0 \\ 0 & 0 & \frac{1}{2M} \end{bmatrix} \begin{bmatrix}\frac{\partial }{\partial x_1} \\ \frac{\partial }{\partial x_2} \\ \frac{\partial }{\partial x_3}\end{bmatrix}
= -\hbar^2\begin{bmatrix}\frac{\partial }{\partial q_1} & \frac{\partial }{\partial q_2} & \frac{\partial }{\partial q_3}\end{bmatrix}U \begin{bmatrix} \frac{1}{2M} &0 &0 \\ 0 &\frac{1}{2m_2} &0 \\ 0 & 0 & \frac{1}{2M} \end{bmatrix}U^{T}\begin{bmatrix}\frac{\partial }{\partial q_1} \\ \frac{\partial }{\partial q_2} \\ \frac{\partial }{\partial q_3}\end{bmatrix}
U \begin{bmatrix} \frac{1}{2M} &0 &0 \\ 0 &\frac{1}{2m_2} &0 \\ 0 & 0 & \frac{1}{2M} \end{bmatrix}U^{T}
= \begin{bmatrix} 1/\sqrt{3} &amp;1/\sqrt{3} &amp;1/\sqrt{3} \\ 1/\sqrt{2} &amp;0 &amp;-1/\sqrt{2} \\ 1/\sqrt{6} &amp; -2/\sqrt{6} &amp; 1/\sqrt{6} \end{bmatrix}\begin{bmatrix} <br /> \frac{1}{2M\sqrt{3}} &amp; \frac{1}{2M\sqrt{2}} &amp;\frac{1}{2M\sqrt{6}} \\<br /> \frac{1}{2m_2\sqrt{3}} &amp; 0 &amp;-\frac{2}{2m_2\sqrt{6}} \\ <br /> \frac{1}{2M\sqrt{3}} &amp; -\frac{1}{2M\sqrt{2}} &amp; \frac{1}{2M\sqrt{6}} \end{bmatrix}
= \begin{bmatrix} <br /> \frac{1}{3M} + \frac{1}{6m_2} &amp; 0 &amp; \frac{1}{3\sqrt{2}}\left(\frac{1}{M} - \frac{1}{m_2} \right) \\ 0 &amp; \frac{1}{2M} &amp; 0 \\<br /> \frac{1}{3\sqrt{2}}\left(\frac{1}{M} - \frac{1}{m_2} \right) &amp; 0 &amp; \frac{1}{6M} + \frac{1}{3m_2} \end{bmatrix}
\frac{KE}{-\hbar^2} = \begin{bmatrix}\frac{\partial }{\partial q_1} &amp; \frac{\partial }{\partial q_2} &amp; \frac{\partial }{\partial q_3}\end{bmatrix}<br /> \begin{bmatrix}\left(\frac{1}{3M} + \frac{1}{6m_2} \right)\frac{\partial }{\partial q_1} + \frac{1}{3\sqrt{2}}\left(\frac{1}{M} - \frac{1}{m_2} \right)\frac{\partial }{\partial q_3}\\ \frac{1}{2M}\frac{\partial }{\partial q_2} \\ \frac{1}{3\sqrt{2}}\left(\frac{1}{M} - \frac{1}{m_2} \right)\frac{\partial }{\partial q_1}+ \left(\frac{1}{6M} + \frac{1}{3m_2} \right)\frac{\partial }{\partial q_3}\end{bmatrix}= \left(\frac{1}{3M} + \frac{1}{6m_2} \right)\frac{\partial^2 }{\partial q_1^2} + \frac{1}{2M}\frac{\partial^2 }{\partial q_2^2} + \left(\frac{1}{6M} + \frac{1}{3m_2} \right)\frac{\partial^2 }{\partial q_3^2}+ \frac{\sqrt{2}}{3}\left(\frac{1}{M} - \frac{1}{m_2} \right)\frac{\partial^2 }{\partial q_1 \partial q_3}
 
Last edited:
Physics news on Phys.org
I have gathered from reading Goldstein that my choice of U was not unique.

We shall reserve a discussion of this exceptional case of degeneracy for a later time. For the present, suffice it to state that a set of a_{jk} coefficients can always be found that satisfies both the eigenvalue conditions Eqs. (6.10), and Eq. (6.22a), so that Eq. (6.23) always holds.

see pages 241-245

So I shall have to have another go at finding U.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top