Klein-Gordon equation with fields

In summary, the conversation discussed the continuity equation in the context of the Klein Gordon equation with fields. The usual approach involves taking the Klein Gordon equation, multiplying it by the complex conjugate of the wave function, and then subtracting the resulting equations to obtain the divergence of the 4-current. However, one individual attempted a different approach by considering the equation for the complex conjugate of the wave function and multiplying it by the wave function instead. After some algebraic manipulation, the individual arrived at a result that may be an identity of the form 0=0. The individual was seeking feedback on this approach and any potential mistakes.
  • #1
Telemachus
835
30

Homework Statement


I was just studying the Klein Gordon equation with fields. In particular I was reviewing the continuity equation. In the derivation for it, the usual approach is to take the klein-gordon equation (I'm using 4-vector covariant notation), multuply by the complex conjugate of the wave function by the left, then take the complex conjugate of this equation, then substract one from the other, and working one gets the divergence of the 4-current. I've tryied something else, I just wanted to see what I've obtained if instead of taking the complex conjugate of the equation, I've just stated the same equation for the complex conjugate of the wave function, then multiplied by the left by the wave function, and substracted this from the klein-gordon with fields equation for the wave function multiplied by the left by the complex conjugate. I hoped to get nothing at all, perhaps an identity of the form 0=0, and did this just as a practice. I wanted to discuss the result I get, so here I am.

Homework Equations



The klein gordon equation with fields reads as follows:

##\displaystyle \left ( \hat p^{\mu}-\frac{e}{c}A^{\mu} \right ) \left ( \hat p_{\mu}-\frac{e}{c}A_{\mu} \right ) \psi=m_0^2 c^2 \psi##

##\displaystyle \left [ g^{\mu \nu} \left ( \frac{\partial}{\partial x^{\nu}} - \frac{e}{c}A_{\nu} \right ) \left ( \frac{\partial}{\partial x^{\mu}}-\frac{e}{c}A_{\mu} \right ) \right ] \psi=\frac{m_0^2 c^2}{\hbar^2} \psi## (1)

Here p is the four momentum operator, A is the four vector for the electromagnetic field.

##\displaystyle A^{\mu}=(A_0,\vec A)=g^{\mu \nu}A_{\nu}##

##\displaystyle \hat p^{\mu}=i\hbar \frac{\partial}{\partial x_{\mu}}=i\hbar \nabla^{\mu}=\left ( i\hbar\frac{\partial}{\partial (ct)},-i\hbar \vec \nabla \right ) ##3. The Attempt at a Solution [/B]

So this is what I did. I took the Klein gordon equation in the form (1), and then multiplied it by the c.c. of the wave function, to obtain:

##\displaystyle \psi^* \left [ g^{\mu \nu} \left ( \frac{\partial}{\partial x^{\nu}} - \frac{e}{c}A_{\nu} \right ) \left ( \frac{\partial}{\partial x^{\mu}}-\frac{e}{c}A_{\mu} \right ) \right ] \psi=\psi^* \frac{m_0^2 c^2}{\hbar^2} \psi=\frac{m_0^2 c^2}{\hbar^2} \left | \psi \right |^2 ## (2)

In the same way I've considered the equation for the complex conjugate of the wave function, and multiplied it by the wave function by the left to obtain:

##\displaystyle \psi \left [ g^{\mu \nu} \left ( \frac{\partial}{\partial x^{\nu}} - \frac{e}{c}A_{\nu} \right ) \left ( \frac{\partial}{\partial x^{\mu}} -\frac{e}{c}A_{\mu} \right ) \right ] \psi^*=\frac{m_0^2 c^2}{\hbar^2} \left | \psi \right |^2## (3)

Then I made the substraction (2)-(3), and after some algebra I've arrived to:

##\displaystyle -g^{\mu \nu} \left [ \frac{\partial}{ \partial x^{\mu} } \left ( \psi^* \frac{ \partial \psi}{\partial x^{\nu}} - \psi \frac{ \partial \psi^* }{ \partial x^{\nu} } \right ) + \frac{ie}{\hbar c} \left ( \frac{\partial \psi }{\partial x^{\nu}} A_{\mu} \psi^* - \frac{\partial \psi^*}{\partial x^{\nu}} A_{\mu} \psi \right ) \right ]=0##

I don't know if this result is right, I could made some mistake, I have eliminated lots of products of operators and things like that. I wanted to know if someone had tried this before, and if this relation has any sense at all.

Thanks in advance.
 
Last edited:
Physics news on Phys.org
  • #2
I'll give in here furhter details on the calculation I've carried on, so I can get some corrections in the procedure, and in the way make a review and perhaps detecting some mistakes by my self. First of all there was a mistake in eq. (1) in a sign, but that was when I wrote this here, in my calculations I did that right.

So (1) should be:

##\displaystyle \left [ g^{\mu \nu} \left ( \frac{\partial}{\partial x^{\nu}} + \frac{e}{c}A_{\nu} \right ) \left ( \frac{\partial}{\partial x^{\mu}}+\frac{e}{c}A_{\mu} \right ) \right ] \psi=\frac{m_0^2 c^2}{\hbar^2} \psi##

And similarly for (2) and (3)

After the substraction (2)-(3) I get:

##\displaystyle \psi^* \left [ -g^{\mu \nu} \left ( \frac{\partial}{\partial x^{\nu}} + \frac{e}{c}A_{\nu} \right ) \left ( \frac{\partial}{\partial x^{\mu}} + \frac{e}{c}A_{\mu} \right ) \right ] \psi - \displaystyle \psi \left [ -g^{\mu \nu} \left ( \frac{\partial}{\partial x^{\nu}} + \frac{e}{c}A_{\nu} \right ) \left ( \frac{\partial}{\partial x^{\mu}} + \frac{e}{c}A_{\mu} \right ) \right ] \psi^*=0 ##

Expanding the terms:

##\displaystyle -g^{\mu \nu} \left \{ \psi^* \left [ \frac{\partial}{\partial x^{\nu}} \frac{\partial}{\partial x^{\mu}} + \frac{\partial}{\partial x^{\nu}} \frac{ie}{\hbar c}A_{\mu} + \frac{ie}{\hbar c}A_{\nu} \frac{\partial}{\partial x^{\mu}} -\frac{e^2}{\hbar^2 c^2 } A_{\nu}A_{\mu} \right ] \psi - \psi \left [ \frac{\partial}{\partial x^{\nu}} \frac{\partial}{\partial x^{\mu}} + \frac{\partial}{\partial x^{\nu}} \frac{ie}{\hbar c}A_{\mu} + \frac{ie}{\hbar c}A_{\nu} \frac{\partial}{\partial x^{\mu}} -\frac{e^2}{\hbar^2 c^2 } A_{\nu}A_{\mu} \right ] \psi^* \right \}=0 ##

Then:
##\displaystyle -g^{\mu \nu} \left \{ \psi^* \frac{\partial}{\partial x^{\nu}} \frac{\partial}{\partial x^{\mu}} \psi - \psi \frac{\partial}{\partial x^{\nu}} \frac{\partial}{\partial x^{\mu}} \psi^* + \frac{ie}{\hbar c} \left ( \psi^* \frac{\partial}{\partial x^{\nu}} A_{\mu} \psi - \psi \frac{\partial}{\partial x^{\nu}} A_{\mu} \psi^* + \psi^* A_{\nu} \frac{\partial}{\partial x^{\mu}} \psi - \psi A_{\nu} \frac{\partial}{\partial x^{\mu}} \psi^* \right ) \\ -\frac{e^2}{\hbar^2 c^2 } \left ( \psi^* A_{\nu}A_{\mu} \psi - \psi A_{\nu}A_{\mu}\psi^* \right ) \right \}=0##

The last term in parenthesis equals zero.

For the next step, I've used that:

1) ##\displaystyle \frac{\partial}{\partial x^{\nu}}\left ( \psi^* \frac{\partial}{\partial x^{\mu}}\psi \right )= \frac{\partial \psi^*}{\partial x^{\nu}}\frac{\partial \psi }{\partial x^{\mu}}+\psi^* \frac{\partial}{\partial x^{\nu}}\frac{\partial}{\partial x^{\mu}}\psi ##

2) ##\displaystyle \frac{\partial}{\partial x^{\nu}}\left ( \psi^* A_{\mu} \psi \right )= \frac{\partial \psi^*}{\partial x^{\nu}} A_{\mu} \psi+\psi^* \frac{\partial}{\partial x^{\nu}}A_{\mu}\psi ##

3) ##\displaystyle g^{\mu \nu} \left ( \frac{\partial \psi^*}{\partial x^{\nu}}\frac{\partial \psi }{\partial x^{\mu}} - \frac{\partial \psi}{\partial x^{\nu}}\frac{\partial \psi^* }{\partial x^{\mu}} \right ) = 0##

And after making all that substitutions I get the result I've posted at the beggining of this topic (I have one correction for it, that I've noted while typing this):

##\displaystyle -g^{\mu \nu} \left [ \frac{\partial}{ \partial x^{\nu} } \left ( \psi^* \frac{ \partial \psi}{\partial x^{\mu}} - \psi \frac{ \partial \psi^* }{ \partial x^{\mu} } \right ) + \frac{ie}{\hbar c} \left ( \frac{\partial \psi }{\partial x^{\nu}} A_{\mu} \psi^* - \frac{\partial \psi^*}{\partial x^{\nu}} A_{\mu} \psi \right ) \right ]=0##
 
Last edited:
  • #3
I think there is a sign error somewhere because all you're showing is that [tex]\partial (\psi^*\partial\psi)+\frac{ie}{\hbar c}\partial\psi A \psi[/tex] is real i.e. [tex] z-z^*=2Im(z)[/tex] which is not a trivial statement for complex fields
 
  • Like
Likes Telemachus
  • #4
Yes, I think you are right. But for a different reason. I actually didn't substract the c.c. of the equation (what I did was substracting the k-g eq. for the . But anyway, the first term is equal to the one that one obtains by doing exactly what you said, that is the procedure the book follows to obtain the continuity equation (I'm following Greiner's relativistic quantum mechanics btw). So the second term must be equal to the one obtained in that way (because it must be equal to the first term) or it could be zero. I think it actually should be zero, so what I would obtain si the continuity equation without fields, but I should demonstrate that

##\displaystyle \frac{\partial \psi }{\partial x^{\nu}} A_{\mu} \psi^*= \frac{\partial \psi^*}{\partial x^{\nu}} A_{\mu} \psi ##

Thanks for your answer :)
 
Last edited:

1. What is the Klein-Gordon equation with fields?

The Klein-Gordon equation with fields is a mathematical equation used in quantum field theory to describe the behavior of scalar particles. It combines the concepts of quantum mechanics and special relativity to describe the evolution of a particle's wave function over time.

2. What do the variables in the Klein-Gordon equation represent?

The variables in the Klein-Gordon equation represent physical quantities such as the position, momentum, and energy of a particle. The equation also includes a term for the mass of the particle, which is a fundamental property that determines its behavior.

3. How is the Klein-Gordon equation with fields different from the Klein-Gordon equation?

The Klein-Gordon equation with fields includes an additional term for the electromagnetic potential, which allows for the description of particles interacting with electromagnetic fields. This makes it a more complete and accurate equation for describing the behavior of particles in quantum field theory.

4. What is the significance of the Klein-Gordon equation with fields in physics?

The Klein-Gordon equation with fields is a fundamental equation in quantum field theory, which is a branch of physics that studies the behavior of particles at a subatomic level. It has been used to successfully predict and explain many phenomena, such as the behavior of particles in particle accelerators.

5. Are there any applications of the Klein-Gordon equation with fields outside of physics?

While the Klein-Gordon equation with fields was originally developed for use in physics, it has also found applications in other fields such as quantum chemistry and materials science. It has been used to study the behavior of electrons in atoms and molecules, and to model the properties of materials at a microscopic level.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
328
  • Advanced Physics Homework Help
Replies
1
Views
876
  • Advanced Physics Homework Help
Replies
10
Views
580
  • Advanced Physics Homework Help
Replies
10
Views
1K
  • Advanced Physics Homework Help
Replies
0
Views
661
  • Advanced Physics Homework Help
Replies
9
Views
2K
  • Advanced Physics Homework Help
Replies
0
Views
128
  • Advanced Physics Homework Help
Replies
5
Views
2K
  • Advanced Physics Homework Help
Replies
29
Views
142
Replies
5
Views
2K
Back
Top