Lagrange Multipliers (and finding extrema of a function with two restraints)

Black Orpheus
Messages
23
Reaction score
0
I need to find the extrema of f(x,y,z)=x+y+z subject to the restraints of x^2 - y^2 = 1 and 2x+z = 1. So the gradient of f equals (1,1,1) =
lambda1(2x,-2y,0) + lambda2(2,0,1). Solving for the lambdas I found that lambda1 = -1/(2x) = -1/(2y), or x=y. But this isn't possible if x^2 - y^2 = 1. Does this mean that there are no absolute max or min, or am I doing something wrong?
 
Physics news on Phys.org
It may mean that the max or min is on the boundary of the set.
 
Last edited by a moderator:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top