Lagrangian for Rolling Cylinder on Inclined Plane | Homework Help

  • Thread starter Thread starter kala
  • Start date Start date
  • Tags Tags
    Lagrangian
kala
Messages
21
Reaction score
0

Homework Statement


Write down the Lagrangian for a cylinder mass m, radius R an moment of inertia I, that rolls without slipping straight down an inclined plane which is at an angle a from the horizontal. Use as your generalized coordinate the cylinder's distance x measure down the plane from its starting point. Write down the Lagrange equation and solve it for the cylinder's acceleration.





The Attempt at a Solution


I tried to find the Lagrangian, this is what i have so far, is it right?
i said that T=1/2mv2+1/2Iw2
and U= -mgxsina so my Lagrangian would be
L=1/2mv2+1/2Iw2+mgxsina.
I think this is correct, but I'm not positive. If it is right then should i write I and w (omega) differently? and then continue with the partial differentiation?
 
Physics news on Phys.org
Everything is correct, except that you must express all the dynamical variables (v, w) in terms of x and its derivatives, as the problem tells you. Also you can explicitly specify the value for I, since you know the shape of the body.
 
so if i remember right v=x' but i am not sure what I and w are in terms of x and derivatives. doesn't I have something to do with R, the radius?
 
w is the angular velocity, which for non-slipping case is given by

\omega = \frac{v}{R} = \frac{\dot{x}}{R}

and I hope you can figure out the moment of inertia I yourself.
 
I= 1/2 m R2?
Just checking before I go on with the partial derivatives.
 
Yes, for a uniformly filled cylinder.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top