(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Show that if the potential in the Lagrangian contains-velocity dependent terms, the canonical momentum corresponding to the coordinate of rotation θ, is no longer the mechanical angular momentum but is given by:

p = L - Ʃn[itex]\bullet[/itex]r_{i}x ∇_{vi}U

2. Relevant equations

3. The attempt at a solution

Setting: L = T - V(qi,qi')

Lagranges equation must be satisfied***:

d/dt(∂L/∂qi') - ∂L/∂qi = 0

=>

d/dt(∂T/∂qi' - ∂V/∂qi') - ∂V/∂qi = 0

Am I on the right track?

I know I am supposed to use ∂ri/∂qi = nxr somewhere.

** Why is it that it MUST be satisfied?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Lagrangian for velocity dependent potential

**Physics Forums | Science Articles, Homework Help, Discussion**