latentcorpse
- 1,411
- 0
Verify that the Lagrangian density
L= \frac{1}{2} \partial_\mu \phi_a \partial^\mu \phi_a - \frac{1}{2} m^2 \phi_a{}^2
for a triplet of real fields \phi_a (a=1,2,3) is invariant under the infinitesimal SO(3) rotation by \theta
\phi_a \rightarrow \phi_a + \theta \epsilon_{abc} n_b \phi_c
plugging this in i get:
L= \frac{1}{2} \partial_\mu ( \phi_a + \theta \epsilon_{abc} n_b \phi_c) \partial^\mu ( \phi_a + \theta \epsilon_{abc} n_b \phi_c ) - \frac{1}{2} m^2 ( \phi_a{}^2 + 2 \phi_a \theta \epsilon_{abc} n_b \phi_c + \theta^2 \epsilon_{abc} \epsilon_{abc} n_b{}^2 \phi_c{}^2)
but now i don't know how to get rid of anything. any ideas?
thanks.
L= \frac{1}{2} \partial_\mu \phi_a \partial^\mu \phi_a - \frac{1}{2} m^2 \phi_a{}^2
for a triplet of real fields \phi_a (a=1,2,3) is invariant under the infinitesimal SO(3) rotation by \theta
\phi_a \rightarrow \phi_a + \theta \epsilon_{abc} n_b \phi_c
plugging this in i get:
L= \frac{1}{2} \partial_\mu ( \phi_a + \theta \epsilon_{abc} n_b \phi_c) \partial^\mu ( \phi_a + \theta \epsilon_{abc} n_b \phi_c ) - \frac{1}{2} m^2 ( \phi_a{}^2 + 2 \phi_a \theta \epsilon_{abc} n_b \phi_c + \theta^2 \epsilon_{abc} \epsilon_{abc} n_b{}^2 \phi_c{}^2)
but now i don't know how to get rid of anything. any ideas?
thanks.