Landé g factor in the Zeeman Effect

FatPhysicsBoy
Messages
62
Reaction score
0

Homework Statement



A source which emits a line at 500 nm is found to exhibit the normal Zeeman e ffect
when placed in a magnetic fi eld. Calculate the magnetic field given that the separation
of adjacent components in the Zeeman pattern is 12.0 pm.


Homework Equations



E=hc/lambda, ΔE = - μ B

The Attempt at a Solution



So I've already gone through all the work of calculating ΔE, and μ and subsequently calculating B to be ~0.5T however I have a problem in that in the expression for my B I have ΔE on top and gμb at the bottom.

I chose to select g = 2 as my Landé g factor however it's a little bit ambiguous, I'm not sure whether it ought to be g = 1 in which case my value for B would be doubled to ~ 1T

Any help would be much appreciated thank you!
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top