Laplace and Systems Control and Analysis

AI Thread Summary
The discussion centers on understanding the Dirac delta function, δ(t-1), which represents an impulse at t=1 with a rectangular pulse area of 1 and an infinitesimally narrow width. Participants explain that the delta function is crucial in systems control and analysis, particularly when testing impulse responses of real-world systems. The Laplace transform of the delta function is highlighted, emphasizing that it simplifies to evaluating the function at the point of the impulse. A suggestion is made to search online for further clarification on applying Laplace transforms to the delta function. Overall, the conversation seeks to demystify the delta function's role in Laplace analysis.
mm391
Messages
65
Reaction score
0
Using Laplace can someone please show me in simple terms how i would solve the following function? This is a lecture example. The solution just shows the answer, nothing about how we get it or what it represents. I am finding this subject particularly difficult to come to grips with.

δ(t-1)

Can you also explain what the function represents?

Thanks

mm
 
Engineering news on Phys.org
δ(t-1) is an impulse at t=1, so it has no value at other values of time
it represents a rectangular pulse of area = 1
the width of the impulse is very narrow, approaching 0.00 nanoseconds
which means its height is correspondingly high, tending to infinity.

In practice, a realistic approximation to the delta function is plenty good enough for testing the impulse response of real-world systems.

Sorry, I can't relate it to Laplace, I have forgotten the topic through disuse. :frown:

Try searching google.
 
The key point to know when computing the laplace of the dirac delta function is that the
∫[f(t)*δ(t-ε)]dt from {0 to t} = f(ε) because δ(t-ε) = 0 everywhere except ε and ∫(δ) from {0 to ∞} =1.
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top