Limit of probabilities of a large sample

MAXIM LI
Messages
6
Reaction score
2
Homework Statement
## Let {X_n}_{n≥1}## be a sequence of iid random variables having a common density function
## f(x) = \begin{cases} xe^{-x} &\text{ for } x \ge 0 \\ 0 &\text{ otherwise }\end{cases}##

Let ##\bar{X}_n = \frac{1}{n}\sum_{i=1}^{n} X_i## where ##n=1,2,\ldots##. Then find ##\lim_{{n\to\infty}} P(\bar{X}_n=2)##
Relevant Equations
##\lim_{{n\to\infty}} P(\bar{X}_n=2)##
My first thought as well but I think the problem is deeper than that. I think that as the n tends towards infinity the probability of the the sample mean converging to the population mean is 1. Looking at proving this.
By the Central Limit Theorem the sample mean distribution can be approximated by a Normal distribution with $$\mu = 2,~\sigma = \sqrt{\dfrac{2}{n}}$$

As ##n\to \infty## this becomes a delta function centered at ##2##
 
Physics news on Phys.org
You're overcomplicating this. ##\overline{X}_n## is a continuous random variable so ##P(\overline{X}_n = a) = 0## for all ##a \in \mathbb{R}##. In particular
$$\lim_{n \to \infty} P(\overline{X}_n = 2)= \lim_{n \to \infty} 0 = 0$$
 
  • Like
Likes nuuskur and MAXIM LI
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top