yancey
- 10
- 0
hello, everyone. When a vector field ##A_{\mu}## has the Lagrangian of the form as
##L=Const.{\times}F^{\mu\nu}F_{\mu\nu}##, where
F_{\mu\nu}=({\partial}_{\mu}-{\alpha}{\partial}^{\rho}{\partial}_{\rho}{\partial}_{\mu})A_{\nu}-({\partial}_{\nu}-{\alpha}{\partial}^{\rho}{\partial}_{\rho}{\partial}_{\nu})A_{\mu}. Now I will apply the least action principle to it. Which one of the following two choices is the right one?
{\delta}S=\frac{{\partial}S}{{\partial}A_{\mu}}{\delta}A_{\mu}+\frac{{\partial}S}{{\partial}({\partial}_{\mu}A_{\nu})}{\delta}({\partial}_{\mu}A_{\nu})=0,
or
{\delta}S=\frac{{\partial}S}{{\partial}A_{\mu}}{\delta}A_{\mu}+\frac{{\partial}S}{{\partial}({\partial}_{\mu}A_{\nu})}{\delta}({\partial}_{\mu}A_{\nu})+\frac{{\partial}S}{{\partial}({\partial}_{\mu}{\partial}_{\nu}{\partial}_{\rho}A_{\lambda})}{\delta}({\partial}_{\mu}{\partial}_{\nu}{\partial}_{\rho}A_{\lambda})=0.
##L=Const.{\times}F^{\mu\nu}F_{\mu\nu}##, where
F_{\mu\nu}=({\partial}_{\mu}-{\alpha}{\partial}^{\rho}{\partial}_{\rho}{\partial}_{\mu})A_{\nu}-({\partial}_{\nu}-{\alpha}{\partial}^{\rho}{\partial}_{\rho}{\partial}_{\nu})A_{\mu}. Now I will apply the least action principle to it. Which one of the following two choices is the right one?
{\delta}S=\frac{{\partial}S}{{\partial}A_{\mu}}{\delta}A_{\mu}+\frac{{\partial}S}{{\partial}({\partial}_{\mu}A_{\nu})}{\delta}({\partial}_{\mu}A_{\nu})=0,
or
{\delta}S=\frac{{\partial}S}{{\partial}A_{\mu}}{\delta}A_{\mu}+\frac{{\partial}S}{{\partial}({\partial}_{\mu}A_{\nu})}{\delta}({\partial}_{\mu}A_{\nu})+\frac{{\partial}S}{{\partial}({\partial}_{\mu}{\partial}_{\nu}{\partial}_{\rho}A_{\lambda})}{\delta}({\partial}_{\mu}{\partial}_{\nu}{\partial}_{\rho}A_{\lambda})=0.