nateHI
- 145
- 4
Homework Statement
Let ##f:\mathbb{R}\to \mathbb{R}## be a nonnegative Lebesgue measurable function. Show that:
##lim_{n\to\infty}\int_{[-n,n]}f d\lambda=\int_{\mathbb{R}}f d\lambda##
Homework Equations
The Attempt at a Solution
Let ##E_n=\{x:-n<x<n\}## then write ##f_n=f\mathcal{X}_{E_n}##
Now apply the Monotone Convergence Thm
##lim_{n\to\infty}\int_{[-n,n]} f d\lambda=lim_{n\to\infty}\int f_n d\lambda=\int_{\mathbb{R}}f d\lambda##
This seems correct. It's important I get it right though since it may be on the test. Please let me know if I did it correctly.