Hey Fred, that works out, because if you say an aircraft is flying at 375 mph and that aircraft requires 1 lbf of thrust to keep it going at that speed, the power (force times distance per unit time) works out to 1 hp. But that's an arbitrary velocity. If the aircraft has more resistance, and can only fly at 100 mph with the same engine, then the equation results in a power output of 0.2667 hp. And if it's zipping along at 1000 mph, the power output becomes 2.667 hp.
So there doesn't seem to be a correlation between hp and thrust. But there should be since the power actually equates to energy in (ie: energy burned in the engine).
I always wondered about this one, how can you equate thrust to hp? Perhaps because it's "static thrust" one must be able to get a "thrust curve" which is analogous to a pressure curve on a centrifugal pump, along with an efficiency.
There has to be more to it than simply thrust at 375 mph equates to a given hp.