Mindscrape
- 1,854
- 1
Homework Statement
Show that the anti-symmetric 4-tensor is a pseudotensor.
Homework Equations
\begin{eqnarray}<br /> x'^0 &=& \gamma x^0 - \beta \gamma x^1 \\<br /> x'^1 &=& \gamma x^1 - \beta \gamma x^0 \\<br /> x'^2 &=& x^2 \\<br /> x'^3 &=& x^3<br /> \end{eqnarray}<br />
The Attempt at a Solution
Under LT
<br /> e'^{ijkl}=\frac{\partial x'^i}{\partial x^q} \frac{\partial x'^j}{\partial x^r} \frac{\partial x'^k}{\partial x^s} \frac{\partial x'^l}{\partial x^t} e^{qrst}
I got that
\begin{eqnarray}<br /> e'^{0123}&=&1 \\<br /> e'^{1023}&=& -1 \\<br /> e'^{0132}&=& -1 \\<br /> e'^{1032}&=& 1<br /> \end{eqnarray}<br />
After doing these first few terms, I'm seeing through induction that e'^{ijkl}=e^{qrst}. Which is what we want for a tensor, right? A pseudotensor should depend on the determinate of e'^{ijkl}. What am I missing??
Last edited: