TrickyDicky said:
My example was trivial I guess, just a test particle following a geodesic path. You cut a segment of that path and call x the first point in the segment, z the last one and y an arbitrary point of the geodesic between x and z.
Ok, so this is just a degenerate "triangle" where all three "sides" are collinear. I agree this satisfies the equality, but I don't see why that creates any sort of problem for cases where the triangle is not degenerate.
TrickyDicky said:
Well, the thing is we basically don't need this match (fortunately) since we are not using those integrated distances from the pseudoRiemannian metric tensor in practice in GR in the way I was thinking by virtue of the geodesic equation with the affine connection.
If you mean that we can't use the pseudo-Riemannian distance as an affine parameter, strictly speaking this is only true for null geodesics. For timelike and spacelike geodesics, the pseudo-Riemannian distance does work as an affine parameter, and since affine transformations are linear, any affine parameter that works for a timelike or spacelike geodesic must be a linear function of the pseudo-Riemannian distance.
If you mean that we don't have to use the geodesic equation in order to compute the pseudo-Riemannian distance along a curve, of course this is true; for one thing, non-geodesic curves also have well-defined pseudo-Riemannian distances along them.
TrickyDicky said:
I was nitpicking about its use(the reverse triangle equality semimetric property) as a posible explanation of the twin paradox since we don't use (pseudosemi)metrics in relativity.
I don't understand. Are you claiming that the reverse triangle inequality is not valid in Minkowski spacetime? That's obviously false: the Minkowski distance function obeys the reverse inequality as long as at least one side of the triangle is timelike. If you're claiming something else, then I don't understand what you're claiming.
TrickyDicky said:
Anyway, you don't think that the integrated distances that are used to make physical predictions based on a certain mathematical set up that includes a manifold and a topology should be required to "match" the restrictions put forth by that topology on topological distances?
Obviously not, since if this were true we could not use Minkowski spacetime, or any spacetime that locally looked like Minkowski spacetime, to make valid physical predictions. Since we can do so, the two "distances" obviously cannot be required to match.
Once again, I think this may be a language confusion. The use of the term "distance" should not mislead you into thinking that topological distances must correspond to physical distances. They don't have to.