typhoonss821
- 13
- 1
Hello everyone, I am stuck when I study Levi-Civita symbol.
The question is how to prove
\varepsilon_{ijk}\varepsilon_{lmn} = \det \begin{bmatrix}<br /> \delta_{il} & \delta_{im}& \delta_{in}\\<br /> \delta_{jl} & \delta_{jm}& \delta_{jn}\\<br /> \delta_{kl} & \delta_{km}& \delta_{kn}\\<br /> \end{bmatrix}
where \varepsilon_{ijk} represents Levi-Civita symbol and \delta_{il} represents kronecker symbol.
Thank you very much^^
The question is how to prove
\varepsilon_{ijk}\varepsilon_{lmn} = \det \begin{bmatrix}<br /> \delta_{il} & \delta_{im}& \delta_{in}\\<br /> \delta_{jl} & \delta_{jm}& \delta_{jn}\\<br /> \delta_{kl} & \delta_{km}& \delta_{kn}\\<br /> \end{bmatrix}
where \varepsilon_{ijk} represents Levi-Civita symbol and \delta_{il} represents kronecker symbol.
Thank you very much^^