Levitating an Object with High Speed Fans: Calculate Energy Needs

AI Thread Summary
To levitate a 2500 kg object using high-speed fans, calculating energy needs requires understanding the aerodynamics involved. If the object is placed in an airtight chamber, maintaining air pressure beneath it could minimize energy consumption after initial pressurization. In free air, effective fan configuration is crucial, as inefficient airflow can lead to wasted energy. Building scale models for fluid dynamics experiments is recommended to optimize design and performance. Accurate calculations and configurations will ensure maximum durability and efficiency in the levitation system.
Ronhrin
Messages
9
Reaction score
0
I was wondering about the best ways to levitate a 2500 Kg ~ 5000 Pounds object at aproximately 1 ~ 2 meters from the ground by the means of high speed fans strategicly located beneath the respective object.

how can I calculate the amount of energy that I need and discover the best configuration for the maximum durability and smallest energy comsuption possible?
 
Engineering news on Phys.org
look into magnets
 
The problem cannot be answered without a great deal more information.

If the object were used as the piston in a airtight chamber, you'd only need to use an air pump to create or maintain air pressure under the object. If your system were entirely air-tight, it would require no work at all, after the initial pressurization.

On the other hand, if the object is in free air, with fans under it, then the aerodynamics of the object become exceedingly important. If most of the air just ends up "blowing around" the object, rather than actually imparting force on the object, then you'll need enormous fans.

My advice would be to construct some accurate scale models, and do your fluid dynamics experiments with that.

- Warren
 
I have Mass A being pulled vertically. I have Mass B on an incline that is pulling Mass A. There is a 2:1 pulley between them. The math I'm using is: FA = MA / 2 = ? t-force MB * SIN(of the incline degree) = ? If MB is greater then FA, it pulls FA up as MB moves down the incline. BUT... If I reverse the 2:1 pulley. Then the math changes to... FA = MA * 2 = ? t-force MB * SIN(of the incline degree) = ? If FA is greater then MB, it pulls MB up the incline as FA moves down. It's confusing...
Hi. I noticed that all electronic devices in my household that also tell time eventually lag behind, except the ones that get synchronized by radio signal or internet. Most of them are battery-powered, except my alarm clock (which runs slow as well). Why does none of them run too fast? Deliberate design (why)? Wrong temperature for quartz crystal? Decreasing battery voltage? Or just a coincidence?
Back
Top