You can, it is always possible to assign a linear order to a set, but not in any useful way. The complex numbers cannot be made into an ordered field. An ordered field is a field, together with an order such that if a< b then a+ c< b+ c for any c and, if a< b and 0< c, then ac< bc.
Suppose we were to define an order on the complex numbers. Then, by "trichotomy" we must have exactly one of 0< i or i< 0 or 0= i. Certainly 0 is not equal to i because 02= 0 and i2= -1.
Suppose 0< i. Then 0*i< i*i so 0< -1. That, in itself is not a contradiction, since this is not necessarily our usual order, but from that we must have 0*i< -1*i or 0< -i. If we add i to both sides of that i< 0 which contradicts 0< i.
Suppose i< 0. Then, adding -i to both sides, 0< -i. Now, multiplying both sides of i< 0 by -i, we have -(-1)< 0 or 1< 0. Again, that itself is not a contradiction but multiplying boyh sides by -i gives -i< 0 which contradicts 0< -i.
Since we get a contradiction in every case, such an order is not possible.