- #1

Bigman

- 27

- 0

there are a few things i don't get when it comes to light moving at c from all frames of reference... i mean it makes sense to me in some cases: like if an observer on the Earth sees a missle going one way at half the speed of light, and a spaceship going the other way at the speed of light, the spaceship won't observe the missle's speed as the speed of light, since time goes faster on the spaceship then it does to the observer on the Earth (at least that's my understanding so far from what I've read... just to double check, is everything i said in that example accurate?)

but i can think of a few examples where it doesn't work out as easily (some of them are harder to explain then others). here's one: you have a space station floating out in the middle of no where in space (this is our initial reference point... i would have used earth, but i wanted to avoid all the gravity and orbits and rotation and stuff) and a ship takes off from the station, and ends up doing about half the speed of light (from the station's frame of reference). since the ship has sped up, the clock on board the ship is now going faster then the clock on board the space station (right?). now, let's say you eject two escape pods from the ship: one out the front, and one out the back(the ship is still facing directly away from the station), and they each shoot out with a velocity which, from the ships frame of reference, has a magnitude equal to the velocity of the space station (which is less then half the speed of light, because time is moving faster on the ship then it is on the space station... right?). what confuses me is, how fast are the clocks on board each of the escape pods going in relation to the spaceship, the space station, and each other?

but i can think of a few examples where it doesn't work out as easily (some of them are harder to explain then others). here's one: you have a space station floating out in the middle of no where in space (this is our initial reference point... i would have used earth, but i wanted to avoid all the gravity and orbits and rotation and stuff) and a ship takes off from the station, and ends up doing about half the speed of light (from the station's frame of reference). since the ship has sped up, the clock on board the ship is now going faster then the clock on board the space station (right?). now, let's say you eject two escape pods from the ship: one out the front, and one out the back(the ship is still facing directly away from the station), and they each shoot out with a velocity which, from the ships frame of reference, has a magnitude equal to the velocity of the space station (which is less then half the speed of light, because time is moving faster on the ship then it is on the space station... right?). what confuses me is, how fast are the clocks on board each of the escape pods going in relation to the spaceship, the space station, and each other?

Last edited: