ktpr2
- 189
- 0
I would've thought
\lim_{x \rightarrow \infty} x sin(\frac{1}{x})} = 0
because
\lim_{x \rightarrow \infty} x = \infty and \lim_{x \rightarrow \infty} sin(\frac{1}{x})} = sin ( \lim_{x \rightarrow \infty} \frac{1}{x} = sin( 0)= 0 and \infty * 0 = 0
I begin to wonder if they should go back to teaching infestimals because in cases
\lim_{x \rightarrow \infty} x sin(\frac{1}{x})} = 0
because
\lim_{x \rightarrow \infty} x = \infty and \lim_{x \rightarrow \infty} sin(\frac{1}{x})} = sin ( \lim_{x \rightarrow \infty} \frac{1}{x} = sin( 0)= 0 and \infty * 0 = 0
I begin to wonder if they should go back to teaching infestimals because in cases