Limit of (sinx/x)^1/x^2 using L'Hospital's Rule?

  • Thread starter Thread starter sara_87
  • Start date Start date
  • Tags Tags
    Limit
sara_87
Messages
748
Reaction score
0

Homework Statement



Calculate the limit as x tends to 0:

(\frac{sinx}{x})^{\frac{1}{x^{2}}}

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
when x ->0

sinx/x ->1
 
sorry, please see my other post. this one had a misprint so i posted it again.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top