juantheron
- 243
- 1
\lim_{x\rightarrow \frac{\pi}{2}}\frac{\sin \left(x\cos x\right)}{\cos \left(x \sin x\right)}
My Try:: \lim_{x\rightarrow \frac{\pi}{2}} \frac{\sin \left(x\cos x\right)}{x\cos x}.\frac{\frac{\pi}{2} - x\sin x}{\sin \left(\frac{\pi}{2} - x \sin x\right)}.\frac{x \cos x}{\frac{\pi}{2}-x \sin x}
Now Using The limit \lim_{y \rightarrow 0}\frac{\sin y}{y} = \lim_{y \rightarrow 0}\frac{y}{\sin y} = 1
So our Limit is Convert into \lim_{x \rightarrow \frac{\pi}{2}}\frac{x \cos x}{\frac{\pi}{2}-x \sin x}
Now Without Using L. Hospital , How Can I solve after That,
please Help me
Thanks
My Try:: \lim_{x\rightarrow \frac{\pi}{2}} \frac{\sin \left(x\cos x\right)}{x\cos x}.\frac{\frac{\pi}{2} - x\sin x}{\sin \left(\frac{\pi}{2} - x \sin x\right)}.\frac{x \cos x}{\frac{\pi}{2}-x \sin x}
Now Using The limit \lim_{y \rightarrow 0}\frac{\sin y}{y} = \lim_{y \rightarrow 0}\frac{y}{\sin y} = 1
So our Limit is Convert into \lim_{x \rightarrow \frac{\pi}{2}}\frac{x \cos x}{\frac{\pi}{2}-x \sin x}
Now Without Using L. Hospital , How Can I solve after That,
please Help me
Thanks