So I'm studying a course on measure theory and we've learnt that the Lebesgue integral of a real function is (loosely) defined as the total area over the x-axis minus the total area under the x-axis. This seems to me to be limited because these areas can both be infinite but their difference may be finite (such as sin(x)/x integrated from 0 to +inf) and, for me, this is a major failing for a definition of the integral. I was wondering whether there were any extensions to the Lebesgue integral that can handle these types of functions?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Limitations of the Lebesgue Integral

Tags:

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**