Limits of Differential Equations

Click For Summary
The discussion focuses on finding the limit of the differential equation (dx/dt) = k(a-x)(b-x) with the initial condition x(0)=0. For part a, where 0<a<b, the user attempts to solve the equation but encounters difficulties and believes the limit as t approaches infinity is a, although they cannot prove it. In part b, where 0<a=b, the user seeks clarification on the solution process and the validity of their calculations. Other participants suggest checking the initial solution and correcting any errors in the exponent manipulation. The conversation emphasizes the importance of verifying each step in solving differential equations.
olive.p
Messages
2
Reaction score
0

Homework Statement


I need help finding the limit of the differential equation.
(dx/dt) = k(a-x)(b-x) that satisfies x(0)=0
assuming
a) 0<a<b and find the limit as t->infinity of X(t)
b) 0<a=b and find the limit as t->infinity of X(t)

Homework Equations


none

The Attempt at a Solution



I separated the equation in part a and attempted to solve for x and got a nasty equation
http://www4b.wolframalpha.com/Calculate/MSP/MSP115222ac5cd5fd1ghhf0000016hfg120ch979ad9?MSPStoreType=image/gif&s=20&w=156.&h=41. then I solved for c and found it to be c=-(a/b). I plugged that in for c and got:
http://www4f.wolframalpha.com/Calculate/MSP/MSP49220eh2769a9a2d53700001g9fiib9hd1eh2c3?MSPStoreType=image/gif&s=49&w=159.&h=50. I don't know how to take it further.
I believe that the answer to part a is a based of a graph, but I am unable to prove it.
Thanks in advance.
 
Last edited by a moderator:
Physics news on Phys.org
olive.p said:

Homework Statement


I need help finding the limit of the differential equation.
(dx/dt) = k(a-x)(b-x) that satisfies x(0)=0
assuming
a) 0<a<b and find the limit as t->infinity of X(t)
b) 0<a=b and find the limit as t->infinity of X(t)

Homework Equations


none

The Attempt at a Solution



I separated the equation in part a and attempted to solve for x and got a nasty equation
http://www4b.wolframalpha.com/Calculate/MSP/MSP115222ac5cd5fd1ghhf0000016hfg120ch979ad9?MSPStoreType=image/gif&s=20&w=156.&h=41. then I solved for c and found it to be c=-(a/b). I plugged that in for c and got:
http://www4f.wolframalpha.com/Calculate/MSP/MSP49220eh2769a9a2d53700001g9fiib9hd1eh2c3?MSPStoreType=image/gif&s=49&w=159.&h=50. I don't know how to take it further.
I believe that the answer to part a is a based of a graph, but I am unable to prove it.
Thanks in advance.
Did you check the solution you got for x in your first equation above?
 
Last edited by a moderator:
olive.p said:

Homework Statement



The Attempt at a Solution



I separated the equation in part a and attempted to solve for x and got a nasty equation
http://www4b.wolframalpha.com/Calculate/MSP/MSP115222ac5cd5fd1ghhf0000016hfg120ch979ad9?MSPStoreType=image/gif&s=20&w=156.&h=41. then I solved for c and found it to be c=-(a/b). I plugged that in for c and got:
http://www4f.wolframalpha.com/Calculate/MSP/MSP49220eh2769a9a2d53700001g9fiib9hd1eh2c3?MSPStoreType=image/gif&s=49&w=159.&h=50.

The last equation is wrong. Why did you change the second exponent?

You can replace ## e^{akt} e^{-bkt } = e^{(a-b)kt } ## in the first equation. The value c=-a/b is right. Just plug in for c.
 
Last edited by a moderator:
Never mind I had it right early. Thanks anyway everyone!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K