Limits Problem Homework: Solving for x in (x^2-5x+4) / (sin(x^1/2) - 2)

  • Thread starter Thread starter ganondorf29
  • Start date Start date
  • Tags Tags
    Limits
ganondorf29
Messages
49
Reaction score
0

Homework Statement



lim (x^2-5x+4) / ((sin(x^1/2) - 2))
x->4



Homework Equations





The Attempt at a Solution



Well I factored the top out to be (x-1)(x-4) and if I plug in 4 I get 0 in the numerator. In the denominator, if I plug in 4, I also end up with zero. I am not too sure what I am supposed to do now
 
Physics news on Phys.org
\lim_{x \rightarrow 4}\frac{x^2-5x+4}{sin(\sqrt x-2)}

Are u allowed to apply l'hopitals rule? If so, then it will work nicely!
 
No, we can't use l'hopitals rule because we haven't learned it yet.
 
ganondorf29 said:
No, we can't use l'hopitals rule because we haven't learned it yet.

Ok, then here it is what just popped into my head,

i would let \sqrt x-2=t so when x-->4, t-->0

now

\lim_{x \rightarrow 4}\frac{x^2-5x+4}{sin(\sqrt x-2)}=\lim_{x \rightarrow 4}\frac{(x-1)(\sqrt x-2)(\sqrt x+2)}{sin(\sqrt x-2)}=\lim_{t\rightarrow 0}\frac{t}{sin(t)}(t+4)[(t+2)^2-1]

now:

\lim_{t\rightarrow 0}\frac{t}{sint}=\lim_{t\rightarrow 0}{\frac{1}{\frac{sint}{t}}=1

I think the rest is easy!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top