Line integral, vector calculus

daku420
Messages
3
Reaction score
0
Evaluate the line integral
Force field is the integral in the form of integrand ( (2x dx+ 2y dy + 2 zdz)/r^2).
the domain of integral is C,


C = C1 + C2. C1 is the line segment from (1; 2; 5) to (2; 3; 3). C2,arc
of the circle with radius 2 and centre (2; 3; 1) in the plane x = 2. The arc has initial point
(2; 3; 3) and terminal point (2; 1; 1). The abbreviations r = <x,y,z> and |r| = r




The Attempt at a Solution



I tried the integral with curve one, since the curve one from (1; 2; 5) to (2; 3; 3) is a line segment the function of the following curve I computed with the equation of line r(t)= (1-t)ro + t(r1) where 0<= t <= 1

ro is (1; 2; 5),
r1 is (2; 3; 3),

i was able to find the r (t) and then took the line integral using the force field above,

Now, I have a problem with the C2 which happens to be an arc, i do know that i can parametrize this C2 with respect to t by saying r(t) = <a cost + x0, a sin t + yo, z0>

but not sure how to get the domain t as i am unable to draw this arc by hand. I would really appreciate if some one tell me how to find out the domain of t in C2 or how to draw it


Sorry for the long post,

Thanks in advance,
regards
daku
 
Physics news on Phys.org
anyone please?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top