Line Integral Problems on Ellipse Boundary | Compute Integrals Directly

JaysFan31

Homework Statement


This is my problem:
Compute the following three line integrals directly around the boundary C of the part R of the interior ellipse (x^2/a^2)+(y^2/b^2)=1 where a>0 and b>0 that lies in the first quadrant:
(a) integral(xdy-ydx)
(b) integral((x^2)dy)
(c) integral((y^2)dx)


Homework Equations


I used parametrisation (x=acost and y=bsint) for the arc of the ellipse.
C is the curve r=(acost)i + (bsint)j (0 less than or equal to t less than or equal to pi).


The Attempt at a Solution


(a) integral(xdy-ydx)=integral from 0 to pi((acost)(bcost)dt)- integral from 0 to pi((bsint)(-asint)dt)=(ab)pi/2-(-ab)(pi)/2=ab(pi)

(b) integral((x^2)dy)=integral from 0 to pi((acost)(acost)(bcost)dt)=0.

(c) integral((y^2)dx)=integral from 0 to pi((bsint)(bsint)(-asint)dt)=-(4/3)a(b^2)

Could anyone check these and see if they are right?
 
Physics news on Phys.org
Actually, should all the bounds be from 0 to pi/2 instead of 0 to pi (since I am looking at only the first quadrant)?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top