I tried the method with A_{3}
\frac{d}{dt}\begin{bmatrix}y_1 \\ y_2\\y_3\\y_4\end{bmatrix} = \begin{bmatrix}4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0\\ 1 & 0 & 0 & 2 \end{bmatrix}\begin{bmatrix}y_1 \\ y_2\\y_3\\y_4\end{bmatrix}
eigenvalues of the matrix are \lambda_1 = \lambda_2 = 4 and \lambda_3 = \lambda_4 = 2, with corresponding eigenvectors \vec{v}_1 = (0,1,0,0), \vec{v}_2 = (2,0,0,1), \vec{v}_3 = (0,0,1,0), and v_4 = (0,0,0,1). This gives the matrices
P = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 \end{bmatrix}\hspace{0.5in}P^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ -\frac{1}{2} & 0 & 0 & 1 \end{bmatrix}\hspace{0.5in}{D = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2 \end{bmatrix}
\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = P^{-1}\begin{bmatrix} y_1 \\ y_2 \\y_3 \\y_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ -\frac{1}{2} & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2/2 \\ y_3 \\ -\frac{1}{2}y_1 + y_4 \end{bmatrix}
\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = P\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 \end{bmatrix}\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} 2z_1 \\ z_2 \\ z_3 \\ z_2 + z_4 \end{bmatrix}
also know that
\frac{d}{dt}\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2 \end{bmatrix}\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}
which has the solutions
z1(t) = K1e4t
z2(t) = K2e4t
z3(t) = K3e2t
z4(t) = K4e2t.
Therefore,
y1 = 2z1 = 2K1e4t
y2 = z2 = K2e4t
y3 = z3 = K3e2t
y4 = z2 + z4 = K2e4t + K4e2t
Have I done this correctly so far? So the Z that I'm supposed to find would be the equations? I guess I'm not seeing how it splits up into D and Z