pezola
- 11
- 0
[SOLVED] Linear Algebra - Direct Sums
Let W1, W2, K1, K2,..., Kp, M1, M2,..., Mq be subspaces of a vector space V such that
W1 = K1 \oplusK2\oplus ... \oplusKp
and
W2 = M1 \oplusM2 \oplus...\oplusMq
Prove that if W1 \capW2 = {0}, then W1 + W2 = W1 \oplusW2 = K1 \oplusK2\oplus...\oplus Kp \oplus M1 \oplusM2 \oplus...\oplusMq
Can we not just say W1 + W2 = W1 \oplusW2 since their intersection is empty?
Then, by the definition of direct sum, the subspaces inside W1 and W2 cannot intersect each other.
Then can we say
W1 \oplusW2 = K1 \oplusK2\oplus...\oplus Kp \oplus M1 \oplusM2 \oplus...\oplusMq ?
Homework Statement
Let W1, W2, K1, K2,..., Kp, M1, M2,..., Mq be subspaces of a vector space V such that
W1 = K1 \oplusK2\oplus ... \oplusKp
and
W2 = M1 \oplusM2 \oplus...\oplusMq
Prove that if W1 \capW2 = {0}, then W1 + W2 = W1 \oplusW2 = K1 \oplusK2\oplus...\oplus Kp \oplus M1 \oplusM2 \oplus...\oplusMq
The Attempt at a Solution
Can we not just say W1 + W2 = W1 \oplusW2 since their intersection is empty?
Then, by the definition of direct sum, the subspaces inside W1 and W2 cannot intersect each other.
Then can we say
W1 \oplusW2 = K1 \oplusK2\oplus...\oplus Kp \oplus M1 \oplusM2 \oplus...\oplusMq ?