Linear Algebra - independent vectors spanning R^3

PirateFan308
Messages
91
Reaction score
0

Homework Statement


Suppose that S={u,v,w} is a basis of R3.
a) Is {u-v,u+v} linearly independent? Why or why not?
b) Does {u+v,u-v} span R3? Why or why not?


Homework Equations


na


The Attempt at a Solution


a) Because we know that u,v,w are linearly independent and span R3, c1u+c2v+c3w = 0.
To test u+v, u-v, consider a(u+v)+b(u-v)=0. So, au+av+bu-bv=0, so u(a+b)+v(a-b)=0. Since u and v are linearly independent, a+b=0 and a-b=0. So 2b=0, so b=0, so a=0. So u+v, u-v are linearly independent.
b) Because there are only 2 vectors, u and v, the rank can only be 2, so it cannot span R3.

I'm pretty sure I got a) correct, but I'm not sure about b). Thanks!
 
Physics news on Phys.org
PirateFan308 said:

Homework Statement


Suppose that S={u,v,w} is a basis of R3.
a) Is {u-v,u+v} linearly independent? Why or why not?
b) Does {u+v,u-v} span R3? Why or why not?


Homework Equations


na


The Attempt at a Solution


a) Because we know that u,v,w are linearly independent and span R3, c1u+c2v+c3w = 0.
To test u+v, u-v, consider a(u+v)+b(u-v)=0. So, au+av+bu-bv=0, so u(a+b)+v(a-b)=0. Since u and v are linearly independent, a+b=0 and a-b=0. So 2b=0, so b=0, so a=0. So u+v, u-v are linearly independent.
b) Because there are only 2 vectors, u and v, the rank can only be 2, so it cannot span R3.

I'm pretty sure I got a) correct, but I'm not sure about b). Thanks!
Both a and b are right.
 
You got the first one right. The second one is essentially correct, but your terminology is off. When you say "rank", you're referring to a matrix or a linear transformation; here you have just two vectors. The span of {u+v, u-v} is a subspace of dimension 2.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top