Linear Algebra: Linear Equation System -> Parameter Form

daemon_dkm
Messages
6
Reaction score
0

Homework Statement


Consider the following linear system of equations:
x1+2x3-5x4 = 0
x1 + 4x2 +4x3 – 5x4 = 10
x1 + 2x2 + 3x3 – 5x4 = 5
4x1 + 2x2 + 9x3 – 20x4 = 5

b) Solve the equation system with the Gaussian method.
c) The solution set describes a plane. Specify it in the parameter form.

Homework Equations


Parameter form: \vec{r}= \vec{r}0 + λ\vec{v} + β\vec{w}

The Attempt at a Solution


3. My Work
After Gauss?:
1 2 0 -5 0
0 2 4 0 10
0 0 3 0 5
0 0 0 0 0

Rank is 3 so there is one free chooseable variable. I chose x4 and ended with the equation:
\vec{X} =
\begin{vmatrix}-10/3\\5/3\\5/3\\0\end{vmatrix} + \vec{x}4 * \begin{vmatrix}5\\0\\0\\1\end{vmatrix}

Which I think is the plane’s formula? I’m not totally sure. My teacher said that he wouldn’t be putting the answers up, so I wanted a second opinion on my numbers. Please and thank you.
 
Last edited:
Physics news on Phys.org
Hey daemon_dkm and welcome to the forums.

Plugging this into octave, I got the following reduced row echelon form:

1.00000 0.00000 2.00000 -5.00000 0.00000
0.00000 1.00000 0.50000 0.00000 2.50000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

This means setting x4 as our dummy we get x2 + x3 = 2.5 and x1 + x3 = 5x4 which means that adding the two together gives us x2 + x3 + x1 + x3 = 2.5 + 5x4 then minus x4 to LHS gives the plane equation:

x1 + x2 + 2x3 - 5x4 - 2.5 = 0, which can be converted to n . (r - r0) = 0 where n is the normal vector, r is an arbitrary point and r0 is a vector one the plane. the normal is anything that is a multiple (except 0) of the vector (1,1,2,-5) and n.r0 = 2.5. where you can solve for any value of r0 you wish.

Do you know how to go from ax + by + cz + dw + e to other formulas?
 
ax + by + cz + dw + e

the normal vector from that plane equation is n= (a, b, c, d), so then you need to find a vector that's perpendicular to the normal vector. Then you need to find another vector that's perpendicular to both of them to use them for the parameter form?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top