MHB Linear Algebra Rank of a Matrix Problem

Heeyeyey
Messages
2
Reaction score
0
Let A be a n x n matrix with complex elements. Prove that the a(k) array, with k ∈ ℕ, where a(k) = rank(A^(k + 1)) - rank(A^k), is monotonically increasing.

Thank you! :)
 
Physics news on Phys.org
This follows from $\operatorname {rank} (AB)\leq \min(\operatorname {rank} (A),\operatorname {rank} (B))$, if by "increasing" you mean "not decreasing".
 
Finally solved it using the Frobenius Inequality for the rank of a matrix. Thank you anyway!
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top