Linear Algebra System Solution: (x,y,z) = (a,b,a), Non-Integer a + b Calculation

jcharky
Messages
1
Reaction score
0
The solution of the system

ax + ay - z = 1
x - ay - az = -1
ax - y + az = 1

is (x,y,z) = (a,b,a). If a is not an integer, what is the numberical value of a + b.

So I guess i should plug in (a,b,a) for (x,y,z) first..

a^2 + ab - a = 1
a - ab + a^2 = -1
a^2 - b - a^2 = 1

I am not sure how to solve for a + b though and I am not sure how part that a is not an integer comes into play can someone help?
 
Physics news on Phys.org
Welcome to PF!

Hi jcharky ! Welcome to PF! :smile:

(try using the X2 tag just above the Reply box :wink:)

Your second and third equations have a2 the wrong way round. :redface:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top