MHB Linear Combination - missing data ?

Yankel
Messages
390
Reaction score
0
Dear all,

I am trying to solve a question, and I think that something is missing.

It is given that the vectors u and v are solutions to the non-homogeneous system of equations Ax=b.

If the vector ku-3v is a solution to the same system, then:

a) k = 4
b) k = 3
c) k = 0

The correct solution is apparently k = 4. How can you tell ?? I can't figure it out.

Thank you in advance.
 
Physics news on Phys.org
Yankel said:
Dear all,

I am trying to solve a question, and I think that something is missing.

It is given that the vectors u and v are solutions to the non-homogeneous system of equations Ax=b.

If the vector ku-3v is a solution to the same system, then:

a) k = 4
b) k = 3
c) k = 0

The correct solution is apparently k = 4. How can you tell ?? I can't figure it out.

Thank you in advance.

Hi Yankel,

You have:
$$
A(ku-3v) = kAu - 3Av = (k-3)b
$$
On the other hand, as $ku-3v$ is also a solution of the system, you have:
$$
A(ku-3v) = b
$$
Since $b\ne0$ by hypothesis, the conclusion follows.
 
So are you saying that k can't be 3 ?
 
Yankel said:
So are you saying that k can't be 3 ?
You must have $(k-3)b = b$; since $b\ne0$, this implies $k-3 = 1$ and $k=4$. This is the solution you mentioned as correct.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top