Linear degree of freedom - Equipartition theorem

steve233
Messages
17
Reaction score
0

Homework Statement



Consider a classical 'degree of freedom' that is linear rather than quadratic: E = c|q| for some constant c. Derive the equipartition theorem using this energy and show that the average energy is Ebar = kT.


Homework Equations



Z = \sum e^{-\beta E(q)} = \sum e^{-\beta c|q|}

Z = \frac{1}{\Delta q} \int_{-\infty}^{+\infty} e^{-\beta c |q|}dq

The Attempt at a Solution


The question seems straight forward, but I'm having a hard time grasping it.

Using the second equation, If I carry out that integral I get:

\frac{1}{\Delta q} \frac {-1}{\beta c} \left [ e^{-\beta cq} \right ]_{-\infty}^{+\infty} = 0

Which doesn't help at all. I'm not sure if there is a trick to the integral or I have to use another method.

Any help will be much appreciated.

PS. This is coursework but not a homework question. I am just doing this question to study for a test.
 
Physics news on Phys.org
it works if you go from zero to infinity on the bounds. and not -inf to +inf.
then use the formula <E>=-1/Z(dz/dB)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top