gothlev
- 3
- 0
Hi !
I am a little bit confused with notation in the following:
Let A=
\begin{bmatrix}<br /> 2 & 3 & 4 \\<br /> 8 & 5 & 1 \\<br /> \end{bmatrix}
and consider A as a linear transformation mapping \mathbb{R}^3 to \mathbb{R}^2. Find the matix representation of A with respect to the bases
\begin{bmatrix}<br /> 1\\<br /> 1\\<br /> 0\\<br /> \end{bmatrix} , \begin{bmatrix}<br /> 0\\<br /> 1\\<br /> 1\\<br /> \end{bmatrix} , \begin{bmatrix}<br /> 1\\<br /> 0\\<br /> 1\\<br /> \end{bmatrix} of \mathbb{R}^3 and
\begin{bmatrix}<br /> 3\\<br /> 1\\<br /> \end{bmatrix} , \begin{bmatrix}<br /> 2\\<br /> 1\\<br /> \end{bmatrix} of \mathbb{R}^2
It seems to be a lot of A´s in here with different meanings, and I suppose it is what confuses me :(. Anyway I solved it as follows:
\begin{bmatrix}<br /> 3 & 2\\<br /> 1 & 1\\<br /> \end{bmatrix}^{-1} * \begin{bmatrix}<br /> 2 & 3 & 4\\<br /> 8 & 5 & 1\\<br /> \end{bmatrix} * \begin{bmatrix}<br /> 1 & 0 & 1\\<br /> 1 & 1 & 0\\<br /> 0 & 1 & 1\\<br /> \end{bmatrix} = \begin{bmatrix}<br /> -21 & -5 & -12\\<br /> 34 & 11 & 21\\<br /> \end{bmatrix}
I am still not sure that I have not confused myself with all the different A´s :( Am I on the right track or completely lost ?
I am a little bit confused with notation in the following:
Let A=
\begin{bmatrix}<br /> 2 & 3 & 4 \\<br /> 8 & 5 & 1 \\<br /> \end{bmatrix}
and consider A as a linear transformation mapping \mathbb{R}^3 to \mathbb{R}^2. Find the matix representation of A with respect to the bases
\begin{bmatrix}<br /> 1\\<br /> 1\\<br /> 0\\<br /> \end{bmatrix} , \begin{bmatrix}<br /> 0\\<br /> 1\\<br /> 1\\<br /> \end{bmatrix} , \begin{bmatrix}<br /> 1\\<br /> 0\\<br /> 1\\<br /> \end{bmatrix} of \mathbb{R}^3 and
\begin{bmatrix}<br /> 3\\<br /> 1\\<br /> \end{bmatrix} , \begin{bmatrix}<br /> 2\\<br /> 1\\<br /> \end{bmatrix} of \mathbb{R}^2
It seems to be a lot of A´s in here with different meanings, and I suppose it is what confuses me :(. Anyway I solved it as follows:
\begin{bmatrix}<br /> 3 & 2\\<br /> 1 & 1\\<br /> \end{bmatrix}^{-1} * \begin{bmatrix}<br /> 2 & 3 & 4\\<br /> 8 & 5 & 1\\<br /> \end{bmatrix} * \begin{bmatrix}<br /> 1 & 0 & 1\\<br /> 1 & 1 & 0\\<br /> 0 & 1 & 1\\<br /> \end{bmatrix} = \begin{bmatrix}<br /> -21 & -5 & -12\\<br /> 34 & 11 & 21\\<br /> \end{bmatrix}
I am still not sure that I have not confused myself with all the different A´s :( Am I on the right track or completely lost ?