I Linearity of the Differential .... Junghenn Theorem 9.2.1 ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Hugo D. Junghenn's book: "A Course in Real Analysis" ...

I am currently focused on Chapter 9: "Differentiation on Rn"

I need some help with an aspect of Theorem 9.2.1 ...

Theorem 9.2.1 reads as follows:
Junghenn - Theorem 9.2.1   ...  ... .png

Theorem 9.2.1 refers to and relies on Theorem 9.1.10 ... ... so I am providing the same ... as follows:

Junghenn - Theorem 9.1.10   ...  ... .png

At the end of the proof of Theorem 9.2.1 we read the following:

" ... ... Then

##( \alpha \mathbf{f} + \beta \mathbf{g} ) ( \mathbf{a} + \mathbf{h} ) = ( \alpha \mathbf{f} + \beta \mathbf{g} ) ( \mathbf{a} ) + ( \alpha \mathbf{ df_a } + \beta \mathbf{ dg_a } ) ( \mathbf{ h } ) + \| \mathbf{ h } \| ##and##\lim_{ \mathbf{ h } \rightarrow \mathbf{ 0 } } ( \alpha \eta + \beta \mu ) ( \mathbf{ h } ) = \mathbf{ 0 }##Another application of 9.1.10 completes the proof."
I don't understand the comment: "Another application of 9.1.10 completes the proof." ... ... why do we need another application of 9.1.10 ...

Doesn't the line" ##( \alpha \mathbf{f} + \beta \mathbf{g} ) ( \mathbf{a} + \mathbf{h} ) = ( \alpha \mathbf{f} + \beta \mathbf{g} ) ( \mathbf{a} ) + ( \alpha \mathbf{ df_a } + \beta \mathbf{ dg_a } ) ( \mathbf{ h } ) + \| \mathbf{ h } \| ##and##\lim_{ \mathbf{ h } \rightarrow \mathbf{ 0 } } ( \alpha \eta + \beta \mu ) ( \mathbf{ h } ) = \mathbf{ 0 }## ..."actually complete the proof?
Help will be appreciated ...

Peter*** EDIT ***

I think I see what the author meant ... he is arguing that the statement:" ##( \alpha \mathbf{f} + \beta \mathbf{g} ) ( \mathbf{a} + \mathbf{h} ) = ( \alpha \mathbf{f} + \beta \mathbf{g} ) ( \mathbf{a} ) + ( \alpha \mathbf{ df_a } + \beta \mathbf{ dg_a } ) ( \mathbf{ h } ) + \| \mathbf{ h } \| ##and##\lim_{ \mathbf{ h } \rightarrow \mathbf{ 0 } } ( \alpha \eta + \beta \mu ) ( \mathbf{ h } ) = \mathbf{ 0 }##BY 9.1.10 ! (THAT IS APPLYING 9.1.10 AGAIN)

proves that
##\alpha \mathbf{ df_a } + \beta \mathbf{ dg_a }## is the differential of ##\alpha \mathbf{f} + \beta \mathbf{g}## ...Hence we do apply 9.1.10 again ...

Is that right ...

(If it is correct ... then my apologies for the simple confusion ... )
 

Attachments

  • Junghenn - Theorem 9.2.1   ...  ... .png
    Junghenn - Theorem 9.2.1 ... ... .png
    27.5 KB · Views: 898
  • Junghenn - Theorem 9.1.10   ...  ... .png
    Junghenn - Theorem 9.1.10 ... ... .png
    30.5 KB · Views: 511
Last edited:
Physics news on Phys.org
Yes that's correct. In the second application of 9.1.10 he is using the reverse direction of the iff in Theorem 9.1.10, arguing from the existence of the function ##(\alpha\eta+\beta\mu)## to the conclusion that ##(\alpha f+\beta g)## is differentiable.
 
  • Like
Likes Math Amateur
Thanks Andrew ...

That helps ...

Peter
 
Back
Top