Lorentz Transformation in Bjorken & Drell QFT

Maybe_Memorie
Messages
346
Reaction score
0

Homework Statement


[/B]
I'm trying to derive (14.25) in B&J QFT. This is

##U(\epsilon)A^\mu(x)U^{-1}(\epsilon) = A^\mu(x') - \epsilon^{\mu\nu}A_\nu(x') + \frac{\partial \lambda(x',\epsilon)}{\partial x'_\mu}##, where ##\lambda(x',\epsilon)## is an operator gauge function.

This is all being done in the radiation gauge, i.e. ##A_0 = 0## and ##\partial_i A^i=0##, with ##i \in {1,2,3}##.

##\epsilon## is an infinitesimal parameter of a Lorentz transformation ##\Lambda##.

Homework Equations

The Attempt at a Solution



##\epsilon## is an infinitesimal parameter of a Lorentz transformation ##\Lambda##.

Under this transformation, ##A^\mu(x) \rightarrow A'^\mu(x')=U(\epsilon)A^\mu(x)U^{-1}(\epsilon)##.

The unitary operator ##U## which generates the infinitesimal Lorentz transformation

##x^{\mu} \rightarrow x'^{\mu} = x^{\mu} + \epsilon^{\mu}_{\nu}x^{\nu}## is

##U(\epsilon)=1 - \frac{i}{2}\epsilon_{\mu\nu}M^{\mu\nu}##

where ##M## are the generators of Lorentz transformations. (I guess really I should have ##M^{\mu\nu}=(M^{\rho\sigma})^{\mu\nu}##. M is a hermitian operator, so

##U^{-1}(\epsilon)=1 + \frac{i}{2}\epsilon_{\mu\nu}M^{\mu\nu}##

Now I tried writing out ##U(\epsilon)A^\mu(x)U^{-1}(\epsilon)## explicitly but it didn't really get me anywhere. The answer is supposed to have ##x'## as the argument of ##A^\mu## on the RHS but I only get ##x##. I'm not sure how to Lorentz transform the function and the argument at the same time.
Underneath the formula in B&J it says the gauge term is necessary because ##UA_0U^{-1}=0## since ##A_0=0##. I don't see why this warrants the need of a gauge term.

Edit: Oh wait, it's needed because otherwise there will be no conjugate momenta for the ##A_0##. Okay I get that, but still don't understand where the initial formula comes from.
 
Last edited:
bump
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top