# Lorentz transformations

#### Orion1

What is the signifigance of the first derivative of the Lorentz transformation gamma function with respect to $$dv$$?

What type of system does this derivative represent?

$$\gamma'(v) = \frac{d}{dv} \left( \frac{1}{\sqrt{1 - \left( \frac{v}{c} \right)^2}} \right) = \frac{v}{c^2 \left[ 1 - \left( \frac{v}{c} \right)^2 \right]^\frac{3}{2}}$$

$$\boxed{\gamma'(v) = \frac{v}{c^2 \left[ 1 - \left( \frac{v}{c} \right)^2 \right]^\frac{3}{2}}}$$

Related Special and General Relativity News on Phys.org

#### Mortimer

I don't see any usefulness for this particular derivative. Why do you ask?

$$\frac{d(1/\gamma)}{dv}$$
might be meaningful. It represents the change of the time-velocity $cd\tau/dt}=c/\gamma$ (see e.g. Brian Greene's "The elegant universe") as a function of the change of the spatial velocity $v$. The function is goniometric.

Last edited:

#### Orion1

Reletive Relation...

$$\gamma'(v)^{-1} = \frac{d}{dv} \left( \frac{1}{\sqrt{1 - \left( \frac{v}{c} \right)^2}} \right)^{-1} = \frac{d}{dv} \left( \sqrt{1 - \left( \frac{v}{c} \right)} \right) = - \frac{v}{c^2 \sqrt{1 - \left( \frac{v}{c} \right)^2 }}$$

$$\boxed{\gamma'(v)^{-1} = - \frac{v}{c^2 \sqrt{1 - \left( \frac{v}{c} \right)^2 }}}$$

$$\gamma'(v)^{-1} = - \frac{v \gamma}{c^2} = - \frac{ds}{dt} \left( \frac{\gamma}{c^2} \right)$$

$$\boxed{\gamma'(v)^{-1} = - \frac{ds}{dt} \left( \frac{\gamma}{c^2} \right)}$$

Are these equation solutions correct?

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving